Pular para o conteúdo principal
Resolva para x (complex solution)
Tick mark Image
Resolva para x
Tick mark Image
Gráfico

Problemas Semelhantes da Pesquisa na Web

Compartilhar

\left(-1+3x-2x^{2}\right)\left(2x-1\right)\times \frac{x^{2}+3x-4}{2x^{2}-3x+1}=-\left(-1+x\right)\left(-1+2x\right)\left(4+x\right)
A variável x não pode ser igual a nenhum dos valores -4,\frac{1}{2},1,4, pois a divisão por zero não está definida. Multiplicar ambos os lados da equação por \left(x-4\right)\left(x-1\right)\left(2x-1\right)\left(x+4\right), o mínimo múltiplo comum de 16-x^{2},2x^{2}-3x+1,4-x.
\frac{\left(-1+3x-2x^{2}\right)\left(x^{2}+3x-4\right)}{2x^{2}-3x+1}\left(2x-1\right)=-\left(-1+x\right)\left(-1+2x\right)\left(4+x\right)
Expresse \left(-1+3x-2x^{2}\right)\times \frac{x^{2}+3x-4}{2x^{2}-3x+1} como uma fração única.
2\times \frac{\left(-1+3x-2x^{2}\right)\left(x^{2}+3x-4\right)}{2x^{2}-3x+1}x-\frac{\left(-1+3x-2x^{2}\right)\left(x^{2}+3x-4\right)}{2x^{2}-3x+1}=-\left(-1+x\right)\left(-1+2x\right)\left(4+x\right)
Utilize a propriedade distributiva para multiplicar \frac{\left(-1+3x-2x^{2}\right)\left(x^{2}+3x-4\right)}{2x^{2}-3x+1} por 2x-1.
2\times \frac{16x^{2}-15x+4-3x^{3}-2x^{4}}{2x^{2}-3x+1}x-\frac{\left(-1+3x-2x^{2}\right)\left(x^{2}+3x-4\right)}{2x^{2}-3x+1}=-\left(-1+x\right)\left(-1+2x\right)\left(4+x\right)
Utilize a propriedade distributiva para multiplicar -1+3x-2x^{2} por x^{2}+3x-4 e combinar termos semelhantes.
\frac{2\left(16x^{2}-15x+4-3x^{3}-2x^{4}\right)}{2x^{2}-3x+1}x-\frac{\left(-1+3x-2x^{2}\right)\left(x^{2}+3x-4\right)}{2x^{2}-3x+1}=-\left(-1+x\right)\left(-1+2x\right)\left(4+x\right)
Expresse 2\times \frac{16x^{2}-15x+4-3x^{3}-2x^{4}}{2x^{2}-3x+1} como uma fração única.
\frac{2\left(16x^{2}-15x+4-3x^{3}-2x^{4}\right)x}{2x^{2}-3x+1}-\frac{\left(-1+3x-2x^{2}\right)\left(x^{2}+3x-4\right)}{2x^{2}-3x+1}=-\left(-1+x\right)\left(-1+2x\right)\left(4+x\right)
Expresse \frac{2\left(16x^{2}-15x+4-3x^{3}-2x^{4}\right)}{2x^{2}-3x+1}x como uma fração única.
\frac{2\left(16x^{2}-15x+4-3x^{3}-2x^{4}\right)x}{2x^{2}-3x+1}-\frac{16x^{2}-15x+4-3x^{3}-2x^{4}}{2x^{2}-3x+1}=-\left(-1+x\right)\left(-1+2x\right)\left(4+x\right)
Utilize a propriedade distributiva para multiplicar -1+3x-2x^{2} por x^{2}+3x-4 e combinar termos semelhantes.
\frac{2\left(16x^{2}-15x+4-3x^{3}-2x^{4}\right)x-\left(16x^{2}-15x+4-3x^{3}-2x^{4}\right)}{2x^{2}-3x+1}=-\left(-1+x\right)\left(-1+2x\right)\left(4+x\right)
Uma vez que \frac{2\left(16x^{2}-15x+4-3x^{3}-2x^{4}\right)x}{2x^{2}-3x+1} e \frac{16x^{2}-15x+4-3x^{3}-2x^{4}}{2x^{2}-3x+1} têm o mesmo denominador, subtraia-os ao subtrair os respetivos numeradores.
\frac{32x^{3}-30x^{2}+8x-6x^{4}-4x^{5}-16x^{2}+15x-4+3x^{3}+2x^{4}}{2x^{2}-3x+1}=-\left(-1+x\right)\left(-1+2x\right)\left(4+x\right)
Efetue as multiplicações em 2\left(16x^{2}-15x+4-3x^{3}-2x^{4}\right)x-\left(16x^{2}-15x+4-3x^{3}-2x^{4}\right).
\frac{35x^{3}-46x^{2}+23x-4x^{4}-4x^{5}-4}{2x^{2}-3x+1}=-\left(-1+x\right)\left(-1+2x\right)\left(4+x\right)
Combine termos semelhantes em 32x^{3}-30x^{2}+8x-6x^{4}-4x^{5}-16x^{2}+15x-4+3x^{3}+2x^{4}.
\frac{35x^{3}-46x^{2}+23x-4x^{4}-4x^{5}-4}{2x^{2}-3x+1}=\left(1-x\right)\left(-1+2x\right)\left(4+x\right)
Utilize a propriedade distributiva para multiplicar -1 por -1+x.
\frac{35x^{3}-46x^{2}+23x-4x^{4}-4x^{5}-4}{2x^{2}-3x+1}=\left(-1+3x-2x^{2}\right)\left(4+x\right)
Utilize a propriedade distributiva para multiplicar 1-x por -1+2x e combinar termos semelhantes.
\frac{35x^{3}-46x^{2}+23x-4x^{4}-4x^{5}-4}{2x^{2}-3x+1}=-4+11x-5x^{2}-2x^{3}
Utilize a propriedade distributiva para multiplicar -1+3x-2x^{2} por 4+x e combinar termos semelhantes.
\frac{35x^{3}-46x^{2}+23x-4x^{4}-4x^{5}-4}{2x^{2}-3x+1}-\left(-4\right)=11x-5x^{2}-2x^{3}
Subtraia -4 de ambos os lados.
\frac{35x^{3}-46x^{2}+23x-4x^{4}-4x^{5}-4}{2x^{2}-3x+1}+4=11x-5x^{2}-2x^{3}
O oposto de -4 é 4.
\frac{35x^{3}-46x^{2}+23x-4x^{4}-4x^{5}-4}{\left(x-1\right)\left(2x-1\right)}+4=11x-5x^{2}-2x^{3}
Fatorize a expressão 2x^{2}-3x+1.
\frac{35x^{3}-46x^{2}+23x-4x^{4}-4x^{5}-4}{\left(x-1\right)\left(2x-1\right)}+\frac{4\left(x-1\right)\left(2x-1\right)}{\left(x-1\right)\left(2x-1\right)}=11x-5x^{2}-2x^{3}
Para adicionar ou subtrair expressões, expanda-as para que os denominadores sejam iguais. Multiplique 4 vezes \frac{\left(x-1\right)\left(2x-1\right)}{\left(x-1\right)\left(2x-1\right)}.
\frac{35x^{3}-46x^{2}+23x-4x^{4}-4x^{5}-4+4\left(x-1\right)\left(2x-1\right)}{\left(x-1\right)\left(2x-1\right)}=11x-5x^{2}-2x^{3}
Uma vez que \frac{35x^{3}-46x^{2}+23x-4x^{4}-4x^{5}-4}{\left(x-1\right)\left(2x-1\right)} e \frac{4\left(x-1\right)\left(2x-1\right)}{\left(x-1\right)\left(2x-1\right)} têm o mesmo denominador, some-os ao somar os respetivos numeradores.
\frac{35x^{3}-46x^{2}+23x-4x^{4}-4x^{5}-4+8x^{2}-4x-8x+4}{\left(x-1\right)\left(2x-1\right)}=11x-5x^{2}-2x^{3}
Efetue as multiplicações em 35x^{3}-46x^{2}+23x-4x^{4}-4x^{5}-4+4\left(x-1\right)\left(2x-1\right).
\frac{35x^{3}-38x^{2}+11x-4x^{4}-4x^{5}}{\left(x-1\right)\left(2x-1\right)}=11x-5x^{2}-2x^{3}
Combine termos semelhantes em 35x^{3}-46x^{2}+23x-4x^{4}-4x^{5}-4+8x^{2}-4x-8x+4.
\frac{35x^{3}-38x^{2}+11x-4x^{4}-4x^{5}}{\left(x-1\right)\left(2x-1\right)}-11x=-5x^{2}-2x^{3}
Subtraia 11x de ambos os lados.
\frac{35x^{3}-38x^{2}+11x-4x^{4}-4x^{5}}{\left(x-1\right)\left(2x-1\right)}+\frac{-11x\left(x-1\right)\left(2x-1\right)}{\left(x-1\right)\left(2x-1\right)}=-5x^{2}-2x^{3}
Para adicionar ou subtrair expressões, expanda-as para que os denominadores sejam iguais. Multiplique -11x vezes \frac{\left(x-1\right)\left(2x-1\right)}{\left(x-1\right)\left(2x-1\right)}.
\frac{35x^{3}-38x^{2}+11x-4x^{4}-4x^{5}-11x\left(x-1\right)\left(2x-1\right)}{\left(x-1\right)\left(2x-1\right)}=-5x^{2}-2x^{3}
Uma vez que \frac{35x^{3}-38x^{2}+11x-4x^{4}-4x^{5}}{\left(x-1\right)\left(2x-1\right)} e \frac{-11x\left(x-1\right)\left(2x-1\right)}{\left(x-1\right)\left(2x-1\right)} têm o mesmo denominador, some-os ao somar os respetivos numeradores.
\frac{35x^{3}-38x^{2}+11x-4x^{4}-4x^{5}-22x^{3}+11x^{2}+22x^{2}-11x}{\left(x-1\right)\left(2x-1\right)}=-5x^{2}-2x^{3}
Efetue as multiplicações em 35x^{3}-38x^{2}+11x-4x^{4}-4x^{5}-11x\left(x-1\right)\left(2x-1\right).
\frac{13x^{3}-5x^{2}-4x^{4}-4x^{5}}{\left(x-1\right)\left(2x-1\right)}=-5x^{2}-2x^{3}
Combine termos semelhantes em 35x^{3}-38x^{2}+11x-4x^{4}-4x^{5}-22x^{3}+11x^{2}+22x^{2}-11x.
\frac{13x^{3}-5x^{2}-4x^{4}-4x^{5}}{\left(x-1\right)\left(2x-1\right)}+5x^{2}=-2x^{3}
Adicionar 5x^{2} em ambos os lados.
\frac{13x^{3}-5x^{2}-4x^{4}-4x^{5}}{\left(x-1\right)\left(2x-1\right)}+\frac{5x^{2}\left(x-1\right)\left(2x-1\right)}{\left(x-1\right)\left(2x-1\right)}=-2x^{3}
Para adicionar ou subtrair expressões, expanda-as para que os denominadores sejam iguais. Multiplique 5x^{2} vezes \frac{\left(x-1\right)\left(2x-1\right)}{\left(x-1\right)\left(2x-1\right)}.
\frac{13x^{3}-5x^{2}-4x^{4}-4x^{5}+5x^{2}\left(x-1\right)\left(2x-1\right)}{\left(x-1\right)\left(2x-1\right)}=-2x^{3}
Uma vez que \frac{13x^{3}-5x^{2}-4x^{4}-4x^{5}}{\left(x-1\right)\left(2x-1\right)} e \frac{5x^{2}\left(x-1\right)\left(2x-1\right)}{\left(x-1\right)\left(2x-1\right)} têm o mesmo denominador, some-os ao somar os respetivos numeradores.
\frac{13x^{3}-5x^{2}-4x^{4}-4x^{5}+10x^{4}-5x^{3}-10x^{3}+5x^{2}}{\left(x-1\right)\left(2x-1\right)}=-2x^{3}
Efetue as multiplicações em 13x^{3}-5x^{2}-4x^{4}-4x^{5}+5x^{2}\left(x-1\right)\left(2x-1\right).
\frac{-2x^{3}+6x^{4}-4x^{5}}{\left(x-1\right)\left(2x-1\right)}=-2x^{3}
Combine termos semelhantes em 13x^{3}-5x^{2}-4x^{4}-4x^{5}+10x^{4}-5x^{3}-10x^{3}+5x^{2}.
\frac{-2x^{3}+6x^{4}-4x^{5}}{\left(x-1\right)\left(2x-1\right)}+2x^{3}=0
Adicionar 2x^{3} em ambos os lados.
\frac{-2x^{3}+6x^{4}-4x^{5}}{\left(x-1\right)\left(2x-1\right)}+\frac{2x^{3}\left(x-1\right)\left(2x-1\right)}{\left(x-1\right)\left(2x-1\right)}=0
Para adicionar ou subtrair expressões, expanda-as para que os denominadores sejam iguais. Multiplique 2x^{3} vezes \frac{\left(x-1\right)\left(2x-1\right)}{\left(x-1\right)\left(2x-1\right)}.
\frac{-2x^{3}+6x^{4}-4x^{5}+2x^{3}\left(x-1\right)\left(2x-1\right)}{\left(x-1\right)\left(2x-1\right)}=0
Uma vez que \frac{-2x^{3}+6x^{4}-4x^{5}}{\left(x-1\right)\left(2x-1\right)} e \frac{2x^{3}\left(x-1\right)\left(2x-1\right)}{\left(x-1\right)\left(2x-1\right)} têm o mesmo denominador, some-os ao somar os respetivos numeradores.
\frac{-2x^{3}+6x^{4}-4x^{5}+4x^{5}-2x^{4}-4x^{4}+2x^{3}}{\left(x-1\right)\left(2x-1\right)}=0
Efetue as multiplicações em -2x^{3}+6x^{4}-4x^{5}+2x^{3}\left(x-1\right)\left(2x-1\right).
\frac{0}{\left(x-1\right)\left(2x-1\right)}=0
Combine termos semelhantes em -2x^{3}+6x^{4}-4x^{5}+4x^{5}-2x^{4}-4x^{4}+2x^{3}.
0=0
A variável x não pode ser igual a nenhum dos valores \frac{1}{2},1, pois a divisão por zero não está definida. Multiplique ambos os lados da equação por \left(x-1\right)\left(2x-1\right).
x\in \mathrm{C}
Isto é verdadeiro para qualquer valor x.
x\in \mathrm{C}\setminus -4,\frac{1}{2},1,4
A variável x não pode ser igual a nenhum dos valores \frac{1}{2},1,-4,4.
\left(-1+3x-2x^{2}\right)\left(2x-1\right)\times \frac{x^{2}+3x-4}{2x^{2}-3x+1}=-\left(-1+x\right)\left(-1+2x\right)\left(4+x\right)
A variável x não pode ser igual a nenhum dos valores -4,\frac{1}{2},1,4, pois a divisão por zero não está definida. Multiplicar ambos os lados da equação por \left(x-4\right)\left(x-1\right)\left(2x-1\right)\left(x+4\right), o mínimo múltiplo comum de 16-x^{2},2x^{2}-3x+1,4-x.
\frac{\left(-1+3x-2x^{2}\right)\left(x^{2}+3x-4\right)}{2x^{2}-3x+1}\left(2x-1\right)=-\left(-1+x\right)\left(-1+2x\right)\left(4+x\right)
Expresse \left(-1+3x-2x^{2}\right)\times \frac{x^{2}+3x-4}{2x^{2}-3x+1} como uma fração única.
2\times \frac{\left(-1+3x-2x^{2}\right)\left(x^{2}+3x-4\right)}{2x^{2}-3x+1}x-\frac{\left(-1+3x-2x^{2}\right)\left(x^{2}+3x-4\right)}{2x^{2}-3x+1}=-\left(-1+x\right)\left(-1+2x\right)\left(4+x\right)
Utilize a propriedade distributiva para multiplicar \frac{\left(-1+3x-2x^{2}\right)\left(x^{2}+3x-4\right)}{2x^{2}-3x+1} por 2x-1.
2\times \frac{16x^{2}-15x+4-3x^{3}-2x^{4}}{2x^{2}-3x+1}x-\frac{\left(-1+3x-2x^{2}\right)\left(x^{2}+3x-4\right)}{2x^{2}-3x+1}=-\left(-1+x\right)\left(-1+2x\right)\left(4+x\right)
Utilize a propriedade distributiva para multiplicar -1+3x-2x^{2} por x^{2}+3x-4 e combinar termos semelhantes.
\frac{2\left(16x^{2}-15x+4-3x^{3}-2x^{4}\right)}{2x^{2}-3x+1}x-\frac{\left(-1+3x-2x^{2}\right)\left(x^{2}+3x-4\right)}{2x^{2}-3x+1}=-\left(-1+x\right)\left(-1+2x\right)\left(4+x\right)
Expresse 2\times \frac{16x^{2}-15x+4-3x^{3}-2x^{4}}{2x^{2}-3x+1} como uma fração única.
\frac{2\left(16x^{2}-15x+4-3x^{3}-2x^{4}\right)x}{2x^{2}-3x+1}-\frac{\left(-1+3x-2x^{2}\right)\left(x^{2}+3x-4\right)}{2x^{2}-3x+1}=-\left(-1+x\right)\left(-1+2x\right)\left(4+x\right)
Expresse \frac{2\left(16x^{2}-15x+4-3x^{3}-2x^{4}\right)}{2x^{2}-3x+1}x como uma fração única.
\frac{2\left(16x^{2}-15x+4-3x^{3}-2x^{4}\right)x}{2x^{2}-3x+1}-\frac{16x^{2}-15x+4-3x^{3}-2x^{4}}{2x^{2}-3x+1}=-\left(-1+x\right)\left(-1+2x\right)\left(4+x\right)
Utilize a propriedade distributiva para multiplicar -1+3x-2x^{2} por x^{2}+3x-4 e combinar termos semelhantes.
\frac{2\left(16x^{2}-15x+4-3x^{3}-2x^{4}\right)x-\left(16x^{2}-15x+4-3x^{3}-2x^{4}\right)}{2x^{2}-3x+1}=-\left(-1+x\right)\left(-1+2x\right)\left(4+x\right)
Uma vez que \frac{2\left(16x^{2}-15x+4-3x^{3}-2x^{4}\right)x}{2x^{2}-3x+1} e \frac{16x^{2}-15x+4-3x^{3}-2x^{4}}{2x^{2}-3x+1} têm o mesmo denominador, subtraia-os ao subtrair os respetivos numeradores.
\frac{32x^{3}-30x^{2}+8x-6x^{4}-4x^{5}-16x^{2}+15x-4+3x^{3}+2x^{4}}{2x^{2}-3x+1}=-\left(-1+x\right)\left(-1+2x\right)\left(4+x\right)
Efetue as multiplicações em 2\left(16x^{2}-15x+4-3x^{3}-2x^{4}\right)x-\left(16x^{2}-15x+4-3x^{3}-2x^{4}\right).
\frac{35x^{3}-46x^{2}+23x-4x^{4}-4x^{5}-4}{2x^{2}-3x+1}=-\left(-1+x\right)\left(-1+2x\right)\left(4+x\right)
Combine termos semelhantes em 32x^{3}-30x^{2}+8x-6x^{4}-4x^{5}-16x^{2}+15x-4+3x^{3}+2x^{4}.
\frac{35x^{3}-46x^{2}+23x-4x^{4}-4x^{5}-4}{2x^{2}-3x+1}=\left(1-x\right)\left(-1+2x\right)\left(4+x\right)
Utilize a propriedade distributiva para multiplicar -1 por -1+x.
\frac{35x^{3}-46x^{2}+23x-4x^{4}-4x^{5}-4}{2x^{2}-3x+1}=\left(-1+3x-2x^{2}\right)\left(4+x\right)
Utilize a propriedade distributiva para multiplicar 1-x por -1+2x e combinar termos semelhantes.
\frac{35x^{3}-46x^{2}+23x-4x^{4}-4x^{5}-4}{2x^{2}-3x+1}=-4+11x-5x^{2}-2x^{3}
Utilize a propriedade distributiva para multiplicar -1+3x-2x^{2} por 4+x e combinar termos semelhantes.
\frac{35x^{3}-46x^{2}+23x-4x^{4}-4x^{5}-4}{2x^{2}-3x+1}-\left(-4\right)=11x-5x^{2}-2x^{3}
Subtraia -4 de ambos os lados.
\frac{35x^{3}-46x^{2}+23x-4x^{4}-4x^{5}-4}{2x^{2}-3x+1}+4=11x-5x^{2}-2x^{3}
O oposto de -4 é 4.
\frac{35x^{3}-46x^{2}+23x-4x^{4}-4x^{5}-4}{\left(x-1\right)\left(2x-1\right)}+4=11x-5x^{2}-2x^{3}
Fatorize a expressão 2x^{2}-3x+1.
\frac{35x^{3}-46x^{2}+23x-4x^{4}-4x^{5}-4}{\left(x-1\right)\left(2x-1\right)}+\frac{4\left(x-1\right)\left(2x-1\right)}{\left(x-1\right)\left(2x-1\right)}=11x-5x^{2}-2x^{3}
Para adicionar ou subtrair expressões, expanda-as para que os denominadores sejam iguais. Multiplique 4 vezes \frac{\left(x-1\right)\left(2x-1\right)}{\left(x-1\right)\left(2x-1\right)}.
\frac{35x^{3}-46x^{2}+23x-4x^{4}-4x^{5}-4+4\left(x-1\right)\left(2x-1\right)}{\left(x-1\right)\left(2x-1\right)}=11x-5x^{2}-2x^{3}
Uma vez que \frac{35x^{3}-46x^{2}+23x-4x^{4}-4x^{5}-4}{\left(x-1\right)\left(2x-1\right)} e \frac{4\left(x-1\right)\left(2x-1\right)}{\left(x-1\right)\left(2x-1\right)} têm o mesmo denominador, some-os ao somar os respetivos numeradores.
\frac{35x^{3}-46x^{2}+23x-4x^{4}-4x^{5}-4+8x^{2}-4x-8x+4}{\left(x-1\right)\left(2x-1\right)}=11x-5x^{2}-2x^{3}
Efetue as multiplicações em 35x^{3}-46x^{2}+23x-4x^{4}-4x^{5}-4+4\left(x-1\right)\left(2x-1\right).
\frac{35x^{3}-38x^{2}+11x-4x^{4}-4x^{5}}{\left(x-1\right)\left(2x-1\right)}=11x-5x^{2}-2x^{3}
Combine termos semelhantes em 35x^{3}-46x^{2}+23x-4x^{4}-4x^{5}-4+8x^{2}-4x-8x+4.
\frac{35x^{3}-38x^{2}+11x-4x^{4}-4x^{5}}{\left(x-1\right)\left(2x-1\right)}-11x=-5x^{2}-2x^{3}
Subtraia 11x de ambos os lados.
\frac{35x^{3}-38x^{2}+11x-4x^{4}-4x^{5}}{\left(x-1\right)\left(2x-1\right)}+\frac{-11x\left(x-1\right)\left(2x-1\right)}{\left(x-1\right)\left(2x-1\right)}=-5x^{2}-2x^{3}
Para adicionar ou subtrair expressões, expanda-as para que os denominadores sejam iguais. Multiplique -11x vezes \frac{\left(x-1\right)\left(2x-1\right)}{\left(x-1\right)\left(2x-1\right)}.
\frac{35x^{3}-38x^{2}+11x-4x^{4}-4x^{5}-11x\left(x-1\right)\left(2x-1\right)}{\left(x-1\right)\left(2x-1\right)}=-5x^{2}-2x^{3}
Uma vez que \frac{35x^{3}-38x^{2}+11x-4x^{4}-4x^{5}}{\left(x-1\right)\left(2x-1\right)} e \frac{-11x\left(x-1\right)\left(2x-1\right)}{\left(x-1\right)\left(2x-1\right)} têm o mesmo denominador, some-os ao somar os respetivos numeradores.
\frac{35x^{3}-38x^{2}+11x-4x^{4}-4x^{5}-22x^{3}+11x^{2}+22x^{2}-11x}{\left(x-1\right)\left(2x-1\right)}=-5x^{2}-2x^{3}
Efetue as multiplicações em 35x^{3}-38x^{2}+11x-4x^{4}-4x^{5}-11x\left(x-1\right)\left(2x-1\right).
\frac{13x^{3}-5x^{2}-4x^{4}-4x^{5}}{\left(x-1\right)\left(2x-1\right)}=-5x^{2}-2x^{3}
Combine termos semelhantes em 35x^{3}-38x^{2}+11x-4x^{4}-4x^{5}-22x^{3}+11x^{2}+22x^{2}-11x.
\frac{13x^{3}-5x^{2}-4x^{4}-4x^{5}}{\left(x-1\right)\left(2x-1\right)}+5x^{2}=-2x^{3}
Adicionar 5x^{2} em ambos os lados.
\frac{13x^{3}-5x^{2}-4x^{4}-4x^{5}}{\left(x-1\right)\left(2x-1\right)}+\frac{5x^{2}\left(x-1\right)\left(2x-1\right)}{\left(x-1\right)\left(2x-1\right)}=-2x^{3}
Para adicionar ou subtrair expressões, expanda-as para que os denominadores sejam iguais. Multiplique 5x^{2} vezes \frac{\left(x-1\right)\left(2x-1\right)}{\left(x-1\right)\left(2x-1\right)}.
\frac{13x^{3}-5x^{2}-4x^{4}-4x^{5}+5x^{2}\left(x-1\right)\left(2x-1\right)}{\left(x-1\right)\left(2x-1\right)}=-2x^{3}
Uma vez que \frac{13x^{3}-5x^{2}-4x^{4}-4x^{5}}{\left(x-1\right)\left(2x-1\right)} e \frac{5x^{2}\left(x-1\right)\left(2x-1\right)}{\left(x-1\right)\left(2x-1\right)} têm o mesmo denominador, some-os ao somar os respetivos numeradores.
\frac{13x^{3}-5x^{2}-4x^{4}-4x^{5}+10x^{4}-5x^{3}-10x^{3}+5x^{2}}{\left(x-1\right)\left(2x-1\right)}=-2x^{3}
Efetue as multiplicações em 13x^{3}-5x^{2}-4x^{4}-4x^{5}+5x^{2}\left(x-1\right)\left(2x-1\right).
\frac{-2x^{3}+6x^{4}-4x^{5}}{\left(x-1\right)\left(2x-1\right)}=-2x^{3}
Combine termos semelhantes em 13x^{3}-5x^{2}-4x^{4}-4x^{5}+10x^{4}-5x^{3}-10x^{3}+5x^{2}.
\frac{-2x^{3}+6x^{4}-4x^{5}}{\left(x-1\right)\left(2x-1\right)}+2x^{3}=0
Adicionar 2x^{3} em ambos os lados.
\frac{-2x^{3}+6x^{4}-4x^{5}}{\left(x-1\right)\left(2x-1\right)}+\frac{2x^{3}\left(x-1\right)\left(2x-1\right)}{\left(x-1\right)\left(2x-1\right)}=0
Para adicionar ou subtrair expressões, expanda-as para que os denominadores sejam iguais. Multiplique 2x^{3} vezes \frac{\left(x-1\right)\left(2x-1\right)}{\left(x-1\right)\left(2x-1\right)}.
\frac{-2x^{3}+6x^{4}-4x^{5}+2x^{3}\left(x-1\right)\left(2x-1\right)}{\left(x-1\right)\left(2x-1\right)}=0
Uma vez que \frac{-2x^{3}+6x^{4}-4x^{5}}{\left(x-1\right)\left(2x-1\right)} e \frac{2x^{3}\left(x-1\right)\left(2x-1\right)}{\left(x-1\right)\left(2x-1\right)} têm o mesmo denominador, some-os ao somar os respetivos numeradores.
\frac{-2x^{3}+6x^{4}-4x^{5}+4x^{5}-2x^{4}-4x^{4}+2x^{3}}{\left(x-1\right)\left(2x-1\right)}=0
Efetue as multiplicações em -2x^{3}+6x^{4}-4x^{5}+2x^{3}\left(x-1\right)\left(2x-1\right).
\frac{0}{\left(x-1\right)\left(2x-1\right)}=0
Combine termos semelhantes em -2x^{3}+6x^{4}-4x^{5}+4x^{5}-2x^{4}-4x^{4}+2x^{3}.
0=0
A variável x não pode ser igual a nenhum dos valores \frac{1}{2},1, pois a divisão por zero não está definida. Multiplique ambos os lados da equação por \left(x-1\right)\left(2x-1\right).
x\in \mathrm{R}
Isto é verdadeiro para qualquer valor x.
x\in \mathrm{R}\setminus -4,\frac{1}{2},1,4
A variável x não pode ser igual a nenhum dos valores \frac{1}{2},1,-4,4.