Resolva para x
x=-3
x=-2
Gráfico
Compartilhar
Copiado para a área de transferência
\left(x-3\right)\times 2x+\left(x-4\right)\times 3+\left(x-4\right)\left(x-3\right)\times 4=30+5x^{2}-36x
A variável x não pode ser igual a nenhum dos valores 3,4, pois a divisão por zero não está definida. Multiplicar ambos os lados da equação por \left(x-4\right)\left(x-3\right), o mínimo múltiplo comum de x-4,x-3,x^{2}-7x+12.
\left(2x-6\right)x+\left(x-4\right)\times 3+\left(x-4\right)\left(x-3\right)\times 4=30+5x^{2}-36x
Utilize a propriedade distributiva para multiplicar x-3 por 2.
2x^{2}-6x+\left(x-4\right)\times 3+\left(x-4\right)\left(x-3\right)\times 4=30+5x^{2}-36x
Utilize a propriedade distributiva para multiplicar 2x-6 por x.
2x^{2}-6x+3x-12+\left(x-4\right)\left(x-3\right)\times 4=30+5x^{2}-36x
Utilize a propriedade distributiva para multiplicar x-4 por 3.
2x^{2}-3x-12+\left(x-4\right)\left(x-3\right)\times 4=30+5x^{2}-36x
Combine -6x e 3x para obter -3x.
2x^{2}-3x-12+\left(x^{2}-7x+12\right)\times 4=30+5x^{2}-36x
Utilize a propriedade distributiva para multiplicar x-4 por x-3 e combinar termos semelhantes.
2x^{2}-3x-12+4x^{2}-28x+48=30+5x^{2}-36x
Utilize a propriedade distributiva para multiplicar x^{2}-7x+12 por 4.
6x^{2}-3x-12-28x+48=30+5x^{2}-36x
Combine 2x^{2} e 4x^{2} para obter 6x^{2}.
6x^{2}-31x-12+48=30+5x^{2}-36x
Combine -3x e -28x para obter -31x.
6x^{2}-31x+36=30+5x^{2}-36x
Some -12 e 48 para obter 36.
6x^{2}-31x+36-30=5x^{2}-36x
Subtraia 30 de ambos os lados.
6x^{2}-31x+6=5x^{2}-36x
Subtraia 30 de 36 para obter 6.
6x^{2}-31x+6-5x^{2}=-36x
Subtraia 5x^{2} de ambos os lados.
x^{2}-31x+6=-36x
Combine 6x^{2} e -5x^{2} para obter x^{2}.
x^{2}-31x+6+36x=0
Adicionar 36x em ambos os lados.
x^{2}+5x+6=0
Combine -31x e 36x para obter 5x.
a+b=5 ab=6
Para resolver a equação, o fator x^{2}+5x+6 utilizando a fórmula x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right). Para encontrar a e b, criar um sistema a ser resolvido.
1,6 2,3
Uma vez que ab é positivo, a e b têm o mesmo sinal. Uma vez que a+b é positivo, a e b são ambos positivos. Apresente todos os pares de números inteiros que devolvem o produto 6.
1+6=7 2+3=5
Calcule a soma de cada par.
a=2 b=3
A solução é o par que devolve a soma 5.
\left(x+2\right)\left(x+3\right)
Reescreva a expressão \left(x+a\right)\left(x+b\right) fatorizada ao utilizar os valores obtidos.
x=-2 x=-3
Para encontrar soluções de equação, resolva x+2=0 e x+3=0.
\left(x-3\right)\times 2x+\left(x-4\right)\times 3+\left(x-4\right)\left(x-3\right)\times 4=30+5x^{2}-36x
A variável x não pode ser igual a nenhum dos valores 3,4, pois a divisão por zero não está definida. Multiplicar ambos os lados da equação por \left(x-4\right)\left(x-3\right), o mínimo múltiplo comum de x-4,x-3,x^{2}-7x+12.
\left(2x-6\right)x+\left(x-4\right)\times 3+\left(x-4\right)\left(x-3\right)\times 4=30+5x^{2}-36x
Utilize a propriedade distributiva para multiplicar x-3 por 2.
2x^{2}-6x+\left(x-4\right)\times 3+\left(x-4\right)\left(x-3\right)\times 4=30+5x^{2}-36x
Utilize a propriedade distributiva para multiplicar 2x-6 por x.
2x^{2}-6x+3x-12+\left(x-4\right)\left(x-3\right)\times 4=30+5x^{2}-36x
Utilize a propriedade distributiva para multiplicar x-4 por 3.
2x^{2}-3x-12+\left(x-4\right)\left(x-3\right)\times 4=30+5x^{2}-36x
Combine -6x e 3x para obter -3x.
2x^{2}-3x-12+\left(x^{2}-7x+12\right)\times 4=30+5x^{2}-36x
Utilize a propriedade distributiva para multiplicar x-4 por x-3 e combinar termos semelhantes.
2x^{2}-3x-12+4x^{2}-28x+48=30+5x^{2}-36x
Utilize a propriedade distributiva para multiplicar x^{2}-7x+12 por 4.
6x^{2}-3x-12-28x+48=30+5x^{2}-36x
Combine 2x^{2} e 4x^{2} para obter 6x^{2}.
6x^{2}-31x-12+48=30+5x^{2}-36x
Combine -3x e -28x para obter -31x.
6x^{2}-31x+36=30+5x^{2}-36x
Some -12 e 48 para obter 36.
6x^{2}-31x+36-30=5x^{2}-36x
Subtraia 30 de ambos os lados.
6x^{2}-31x+6=5x^{2}-36x
Subtraia 30 de 36 para obter 6.
6x^{2}-31x+6-5x^{2}=-36x
Subtraia 5x^{2} de ambos os lados.
x^{2}-31x+6=-36x
Combine 6x^{2} e -5x^{2} para obter x^{2}.
x^{2}-31x+6+36x=0
Adicionar 36x em ambos os lados.
x^{2}+5x+6=0
Combine -31x e 36x para obter 5x.
a+b=5 ab=1\times 6=6
Para resolver a equação, fatorize o lado esquerdo ao agrupar. Em primeiro lugar, o lado esquerdo tem de ser reescrito como x^{2}+ax+bx+6. Para encontrar a e b, criar um sistema a ser resolvido.
1,6 2,3
Uma vez que ab é positivo, a e b têm o mesmo sinal. Uma vez que a+b é positivo, a e b são ambos positivos. Apresente todos os pares de números inteiros que devolvem o produto 6.
1+6=7 2+3=5
Calcule a soma de cada par.
a=2 b=3
A solução é o par que devolve a soma 5.
\left(x^{2}+2x\right)+\left(3x+6\right)
Reescreva x^{2}+5x+6 como \left(x^{2}+2x\right)+\left(3x+6\right).
x\left(x+2\right)+3\left(x+2\right)
Fator out x no primeiro e 3 no segundo grupo.
\left(x+2\right)\left(x+3\right)
Decomponha o termo comum x+2 ao utilizar a propriedade distributiva.
x=-2 x=-3
Para encontrar soluções de equação, resolva x+2=0 e x+3=0.
\left(x-3\right)\times 2x+\left(x-4\right)\times 3+\left(x-4\right)\left(x-3\right)\times 4=30+5x^{2}-36x
A variável x não pode ser igual a nenhum dos valores 3,4, pois a divisão por zero não está definida. Multiplicar ambos os lados da equação por \left(x-4\right)\left(x-3\right), o mínimo múltiplo comum de x-4,x-3,x^{2}-7x+12.
\left(2x-6\right)x+\left(x-4\right)\times 3+\left(x-4\right)\left(x-3\right)\times 4=30+5x^{2}-36x
Utilize a propriedade distributiva para multiplicar x-3 por 2.
2x^{2}-6x+\left(x-4\right)\times 3+\left(x-4\right)\left(x-3\right)\times 4=30+5x^{2}-36x
Utilize a propriedade distributiva para multiplicar 2x-6 por x.
2x^{2}-6x+3x-12+\left(x-4\right)\left(x-3\right)\times 4=30+5x^{2}-36x
Utilize a propriedade distributiva para multiplicar x-4 por 3.
2x^{2}-3x-12+\left(x-4\right)\left(x-3\right)\times 4=30+5x^{2}-36x
Combine -6x e 3x para obter -3x.
2x^{2}-3x-12+\left(x^{2}-7x+12\right)\times 4=30+5x^{2}-36x
Utilize a propriedade distributiva para multiplicar x-4 por x-3 e combinar termos semelhantes.
2x^{2}-3x-12+4x^{2}-28x+48=30+5x^{2}-36x
Utilize a propriedade distributiva para multiplicar x^{2}-7x+12 por 4.
6x^{2}-3x-12-28x+48=30+5x^{2}-36x
Combine 2x^{2} e 4x^{2} para obter 6x^{2}.
6x^{2}-31x-12+48=30+5x^{2}-36x
Combine -3x e -28x para obter -31x.
6x^{2}-31x+36=30+5x^{2}-36x
Some -12 e 48 para obter 36.
6x^{2}-31x+36-30=5x^{2}-36x
Subtraia 30 de ambos os lados.
6x^{2}-31x+6=5x^{2}-36x
Subtraia 30 de 36 para obter 6.
6x^{2}-31x+6-5x^{2}=-36x
Subtraia 5x^{2} de ambos os lados.
x^{2}-31x+6=-36x
Combine 6x^{2} e -5x^{2} para obter x^{2}.
x^{2}-31x+6+36x=0
Adicionar 36x em ambos os lados.
x^{2}+5x+6=0
Combine -31x e 36x para obter 5x.
x=\frac{-5±\sqrt{5^{2}-4\times 6}}{2}
Esta equação está no formato padrão: ax^{2}+bx+c=0. Substitua 1 por a, 5 por b e 6 por c na fórmula quadrática, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-5±\sqrt{25-4\times 6}}{2}
Calcule o quadrado de 5.
x=\frac{-5±\sqrt{25-24}}{2}
Multiplique -4 vezes 6.
x=\frac{-5±\sqrt{1}}{2}
Some 25 com -24.
x=\frac{-5±1}{2}
Calcule a raiz quadrada de 1.
x=-\frac{4}{2}
Agora, resolva a equação x=\frac{-5±1}{2} quando ± for uma adição. Some -5 com 1.
x=-2
Divida -4 por 2.
x=-\frac{6}{2}
Agora, resolva a equação x=\frac{-5±1}{2} quando ± for uma subtração. Subtraia 1 de -5.
x=-3
Divida -6 por 2.
x=-2 x=-3
A equação está resolvida.
\left(x-3\right)\times 2x+\left(x-4\right)\times 3+\left(x-4\right)\left(x-3\right)\times 4=30+5x^{2}-36x
A variável x não pode ser igual a nenhum dos valores 3,4, pois a divisão por zero não está definida. Multiplicar ambos os lados da equação por \left(x-4\right)\left(x-3\right), o mínimo múltiplo comum de x-4,x-3,x^{2}-7x+12.
\left(2x-6\right)x+\left(x-4\right)\times 3+\left(x-4\right)\left(x-3\right)\times 4=30+5x^{2}-36x
Utilize a propriedade distributiva para multiplicar x-3 por 2.
2x^{2}-6x+\left(x-4\right)\times 3+\left(x-4\right)\left(x-3\right)\times 4=30+5x^{2}-36x
Utilize a propriedade distributiva para multiplicar 2x-6 por x.
2x^{2}-6x+3x-12+\left(x-4\right)\left(x-3\right)\times 4=30+5x^{2}-36x
Utilize a propriedade distributiva para multiplicar x-4 por 3.
2x^{2}-3x-12+\left(x-4\right)\left(x-3\right)\times 4=30+5x^{2}-36x
Combine -6x e 3x para obter -3x.
2x^{2}-3x-12+\left(x^{2}-7x+12\right)\times 4=30+5x^{2}-36x
Utilize a propriedade distributiva para multiplicar x-4 por x-3 e combinar termos semelhantes.
2x^{2}-3x-12+4x^{2}-28x+48=30+5x^{2}-36x
Utilize a propriedade distributiva para multiplicar x^{2}-7x+12 por 4.
6x^{2}-3x-12-28x+48=30+5x^{2}-36x
Combine 2x^{2} e 4x^{2} para obter 6x^{2}.
6x^{2}-31x-12+48=30+5x^{2}-36x
Combine -3x e -28x para obter -31x.
6x^{2}-31x+36=30+5x^{2}-36x
Some -12 e 48 para obter 36.
6x^{2}-31x+36-5x^{2}=30-36x
Subtraia 5x^{2} de ambos os lados.
x^{2}-31x+36=30-36x
Combine 6x^{2} e -5x^{2} para obter x^{2}.
x^{2}-31x+36+36x=30
Adicionar 36x em ambos os lados.
x^{2}+5x+36=30
Combine -31x e 36x para obter 5x.
x^{2}+5x=30-36
Subtraia 36 de ambos os lados.
x^{2}+5x=-6
Subtraia 36 de 30 para obter -6.
x^{2}+5x+\left(\frac{5}{2}\right)^{2}=-6+\left(\frac{5}{2}\right)^{2}
Divida 5, o coeficiente do termo x, 2 para obter \frac{5}{2}. Em seguida, adicione o quadrado de \frac{5}{2} para ambos os lados da equação. Este passo faz do lado esquerdo da equação um quadrado perfeito.
x^{2}+5x+\frac{25}{4}=-6+\frac{25}{4}
Calcule o quadrado de \frac{5}{2}, ao elevar ao quadrado o numerador e o denominador da fração.
x^{2}+5x+\frac{25}{4}=\frac{1}{4}
Some -6 com \frac{25}{4}.
\left(x+\frac{5}{2}\right)^{2}=\frac{1}{4}
Fatorize x^{2}+5x+\frac{25}{4}. Em geral, quando x^{2}+bx+c é um quadrado perfeito, pode sempre ser fatorizado como \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{5}{2}\right)^{2}}=\sqrt{\frac{1}{4}}
Calcule a raiz quadrada de ambos os lados da equação.
x+\frac{5}{2}=\frac{1}{2} x+\frac{5}{2}=-\frac{1}{2}
Simplifique.
x=-2 x=-3
Subtraia \frac{5}{2} de ambos os lados da equação.
Exemplos
Equação quadrática
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometria
4 \sin \theta \cos \theta = 2 \sin \theta
Equação linear
y = 3x + 4
Aritmética
699 * 533
Matriz
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Equação simultânea
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferenciação
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integração
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limites
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}