Pular para o conteúdo principal
Avaliar
Tick mark Image
Parte Real
Tick mark Image

Problemas Semelhantes da Pesquisa na Web

Compartilhar

\frac{2i\left(1+2i\right)}{\left(1-2i\right)\left(1+2i\right)}
Multiplique o numerador e o denominador pelo número complexo conjugado do denominador, 1+2i.
\frac{2i\left(1+2i\right)}{1^{2}-2^{2}i^{2}}
A multiplicação pode ser transformada na diferença dos quadrados através da regra: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{2i\left(1+2i\right)}{5}
Por definição, i^{2} é -1. Calcule o denominador.
\frac{2i\times 1+2\times 2i^{2}}{5}
Multiplique 2i vezes 1+2i.
\frac{2i\times 1+2\times 2\left(-1\right)}{5}
Por definição, i^{2} é -1.
\frac{-4+2i}{5}
Efetue as multiplicações em 2i\times 1+2\times 2\left(-1\right). Reordene os termos.
-\frac{4}{5}+\frac{2}{5}i
Dividir -4+2i por 5 para obter -\frac{4}{5}+\frac{2}{5}i.
Re(\frac{2i\left(1+2i\right)}{\left(1-2i\right)\left(1+2i\right)})
Multiplique o numerador e o denominador de \frac{2i}{1-2i} pelo conjugado complexo do denominador, 1+2i.
Re(\frac{2i\left(1+2i\right)}{1^{2}-2^{2}i^{2}})
A multiplicação pode ser transformada na diferença dos quadrados através da regra: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
Re(\frac{2i\left(1+2i\right)}{5})
Por definição, i^{2} é -1. Calcule o denominador.
Re(\frac{2i\times 1+2\times 2i^{2}}{5})
Multiplique 2i vezes 1+2i.
Re(\frac{2i\times 1+2\times 2\left(-1\right)}{5})
Por definição, i^{2} é -1.
Re(\frac{-4+2i}{5})
Efetue as multiplicações em 2i\times 1+2\times 2\left(-1\right). Reordene os termos.
Re(-\frac{4}{5}+\frac{2}{5}i)
Dividir -4+2i por 5 para obter -\frac{4}{5}+\frac{2}{5}i.
-\frac{4}{5}
A parte real de -\frac{4}{5}+\frac{2}{5}i é -\frac{4}{5}.