Resolva para x
x=-13
Gráfico
Compartilhar
Copiado para a área de transferência
2+\left(x+3\right)\times 5=\left(x-3\right)\times 3
A variável x não pode ser igual a nenhum dos valores -3,3, pois a divisão por zero não está definida. Multiplicar ambos os lados da equação por \left(x-3\right)\left(x+3\right), o mínimo múltiplo comum de x^{2}-9,x-3,x+3.
2+5x+15=\left(x-3\right)\times 3
Utilize a propriedade distributiva para multiplicar x+3 por 5.
17+5x=\left(x-3\right)\times 3
Some 2 e 15 para obter 17.
17+5x=3x-9
Utilize a propriedade distributiva para multiplicar x-3 por 3.
17+5x-3x=-9
Subtraia 3x de ambos os lados.
17+2x=-9
Combine 5x e -3x para obter 2x.
2x=-9-17
Subtraia 17 de ambos os lados.
2x=-26
Subtraia 17 de -9 para obter -26.
x=\frac{-26}{2}
Divida ambos os lados por 2.
x=-13
Dividir -26 por 2 para obter -13.
Exemplos
Equação quadrática
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometria
4 \sin \theta \cos \theta = 2 \sin \theta
Equação linear
y = 3x + 4
Aritmética
699 * 533
Matriz
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Equação simultânea
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferenciação
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integração
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limites
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}