Pular para o conteúdo principal
Avaliar
Tick mark Image
Parte Real
Tick mark Image

Problemas Semelhantes da Pesquisa na Web

Compartilhar

\frac{\left(1-2i\right)\left(1-2i\right)}{\left(1+2i\right)\left(1-2i\right)}
Multiplique o numerador e o denominador pelo número complexo conjugado do denominador, 1-2i.
\frac{\left(1-2i\right)\left(1-2i\right)}{1^{2}-2^{2}i^{2}}
A multiplicação pode ser transformada na diferença dos quadrados através da regra: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(1-2i\right)\left(1-2i\right)}{5}
Por definição, i^{2} é -1. Calcule o denominador.
\frac{1\times 1+1\times \left(-2i\right)-2i-2\left(-2\right)i^{2}}{5}
Multiplique os números complexos 1-2i e 1-2i da mesma forma que multiplica binómios.
\frac{1\times 1+1\times \left(-2i\right)-2i-2\left(-2\right)\left(-1\right)}{5}
Por definição, i^{2} é -1.
\frac{1-2i-2i-4}{5}
Efetue as multiplicações em 1\times 1+1\times \left(-2i\right)-2i-2\left(-2\right)\left(-1\right).
\frac{1-4+\left(-2-2\right)i}{5}
Combine as partes reais e imaginárias em 1-2i-2i-4.
\frac{-3-4i}{5}
Efetue as adições em 1-4+\left(-2-2\right)i.
-\frac{3}{5}-\frac{4}{5}i
Dividir -3-4i por 5 para obter -\frac{3}{5}-\frac{4}{5}i.
Re(\frac{\left(1-2i\right)\left(1-2i\right)}{\left(1+2i\right)\left(1-2i\right)})
Multiplique o numerador e o denominador de \frac{1-2i}{1+2i} pelo conjugado complexo do denominador, 1-2i.
Re(\frac{\left(1-2i\right)\left(1-2i\right)}{1^{2}-2^{2}i^{2}})
A multiplicação pode ser transformada na diferença dos quadrados através da regra: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
Re(\frac{\left(1-2i\right)\left(1-2i\right)}{5})
Por definição, i^{2} é -1. Calcule o denominador.
Re(\frac{1\times 1+1\times \left(-2i\right)-2i-2\left(-2\right)i^{2}}{5})
Multiplique os números complexos 1-2i e 1-2i da mesma forma que multiplica binómios.
Re(\frac{1\times 1+1\times \left(-2i\right)-2i-2\left(-2\right)\left(-1\right)}{5})
Por definição, i^{2} é -1.
Re(\frac{1-2i-2i-4}{5})
Efetue as multiplicações em 1\times 1+1\times \left(-2i\right)-2i-2\left(-2\right)\left(-1\right).
Re(\frac{1-4+\left(-2-2\right)i}{5})
Combine as partes reais e imaginárias em 1-2i-2i-4.
Re(\frac{-3-4i}{5})
Efetue as adições em 1-4+\left(-2-2\right)i.
Re(-\frac{3}{5}-\frac{4}{5}i)
Dividir -3-4i por 5 para obter -\frac{3}{5}-\frac{4}{5}i.
-\frac{3}{5}
A parte real de -\frac{3}{5}-\frac{4}{5}i é -\frac{3}{5}.