Resolva para x
x = \frac{\sqrt{5} + 1}{2} \approx 1,618033989
x=\frac{1-\sqrt{5}}{2}\approx -0,618033989
Gráfico
Compartilhar
Copiado para a área de transferência
x-1+\left(x+1\right)\times 2=x^{2}+2x
A variável x não pode ser igual a nenhum dos valores -1,1, pois a divisão por zero não está definida. Multiplicar ambos os lados da equação por \left(x-1\right)\left(x+1\right), o mínimo múltiplo comum de x+1,x-1,x^{2}-1.
x-1+2x+2=x^{2}+2x
Utilize a propriedade distributiva para multiplicar x+1 por 2.
3x-1+2=x^{2}+2x
Combine x e 2x para obter 3x.
3x+1=x^{2}+2x
Some -1 e 2 para obter 1.
3x+1-x^{2}=2x
Subtraia x^{2} de ambos os lados.
3x+1-x^{2}-2x=0
Subtraia 2x de ambos os lados.
x+1-x^{2}=0
Combine 3x e -2x para obter x.
-x^{2}+x+1=0
Todas as equações com o formato ax^{2}+bx+c=0 podem ser resolvidas com a fórmula quadrática: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. A fórmula quadrática fornece duas soluções, uma quando ± corresponde à adição e outra quando corresponde à subtração.
x=\frac{-1±\sqrt{1^{2}-4\left(-1\right)}}{2\left(-1\right)}
Esta equação está no formato padrão: ax^{2}+bx+c=0. Substitua -1 por a, 1 por b e 1 por c na fórmula quadrática, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-1±\sqrt{1-4\left(-1\right)}}{2\left(-1\right)}
Calcule o quadrado de 1.
x=\frac{-1±\sqrt{1+4}}{2\left(-1\right)}
Multiplique -4 vezes -1.
x=\frac{-1±\sqrt{5}}{2\left(-1\right)}
Some 1 com 4.
x=\frac{-1±\sqrt{5}}{-2}
Multiplique 2 vezes -1.
x=\frac{\sqrt{5}-1}{-2}
Agora, resolva a equação x=\frac{-1±\sqrt{5}}{-2} quando ± for uma adição. Some -1 com \sqrt{5}.
x=\frac{1-\sqrt{5}}{2}
Divida -1+\sqrt{5} por -2.
x=\frac{-\sqrt{5}-1}{-2}
Agora, resolva a equação x=\frac{-1±\sqrt{5}}{-2} quando ± for uma subtração. Subtraia \sqrt{5} de -1.
x=\frac{\sqrt{5}+1}{2}
Divida -1-\sqrt{5} por -2.
x=\frac{1-\sqrt{5}}{2} x=\frac{\sqrt{5}+1}{2}
A equação está resolvida.
x-1+\left(x+1\right)\times 2=x^{2}+2x
A variável x não pode ser igual a nenhum dos valores -1,1, pois a divisão por zero não está definida. Multiplicar ambos os lados da equação por \left(x-1\right)\left(x+1\right), o mínimo múltiplo comum de x+1,x-1,x^{2}-1.
x-1+2x+2=x^{2}+2x
Utilize a propriedade distributiva para multiplicar x+1 por 2.
3x-1+2=x^{2}+2x
Combine x e 2x para obter 3x.
3x+1=x^{2}+2x
Some -1 e 2 para obter 1.
3x+1-x^{2}=2x
Subtraia x^{2} de ambos os lados.
3x+1-x^{2}-2x=0
Subtraia 2x de ambos os lados.
x+1-x^{2}=0
Combine 3x e -2x para obter x.
x-x^{2}=-1
Subtraia 1 de ambos os lados. Um valor subtraído de zero dá a respetiva negação.
-x^{2}+x=-1
As equações quadráticas tal como esta podem ser resolvidas através da conclusão do quadrado. Para concluir o quadrado, primeiro a equação tem de estar no formato x^{2}+bx=c.
\frac{-x^{2}+x}{-1}=-\frac{1}{-1}
Divida ambos os lados por -1.
x^{2}+\frac{1}{-1}x=-\frac{1}{-1}
Dividir por -1 anula a multiplicação por -1.
x^{2}-x=-\frac{1}{-1}
Divida 1 por -1.
x^{2}-x=1
Divida -1 por -1.
x^{2}-x+\left(-\frac{1}{2}\right)^{2}=1+\left(-\frac{1}{2}\right)^{2}
Divida -1, o coeficiente do termo x, 2 para obter -\frac{1}{2}. Em seguida, adicione o quadrado de -\frac{1}{2} para ambos os lados da equação. Este passo faz do lado esquerdo da equação um quadrado perfeito.
x^{2}-x+\frac{1}{4}=1+\frac{1}{4}
Calcule o quadrado de -\frac{1}{2}, ao elevar ao quadrado o numerador e o denominador da fração.
x^{2}-x+\frac{1}{4}=\frac{5}{4}
Some 1 com \frac{1}{4}.
\left(x-\frac{1}{2}\right)^{2}=\frac{5}{4}
Fatorize x^{2}-x+\frac{1}{4}. Em geral, quando x^{2}+bx+c é um quadrado perfeito, pode sempre ser fatorizado como \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{1}{2}\right)^{2}}=\sqrt{\frac{5}{4}}
Calcule a raiz quadrada de ambos os lados da equação.
x-\frac{1}{2}=\frac{\sqrt{5}}{2} x-\frac{1}{2}=-\frac{\sqrt{5}}{2}
Simplifique.
x=\frac{\sqrt{5}+1}{2} x=\frac{1-\sqrt{5}}{2}
Some \frac{1}{2} a ambos os lados da equação.
Exemplos
Equação quadrática
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometria
4 \sin \theta \cos \theta = 2 \sin \theta
Equação linear
y = 3x + 4
Aritmética
699 * 533
Matriz
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Equação simultânea
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferenciação
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integração
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limites
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}