Pular para o conteúdo principal
Avaliar
Tick mark Image
Calcular a diferenciação com respeito a a
Tick mark Image

Problemas Semelhantes da Pesquisa na Web

Compartilhar

\frac{\left(-a^{2}\right)a}{-a^{8}}
Expresse \frac{-a^{2}}{-a^{8}}a como uma fração única.
\frac{-a^{2}}{-a^{7}}
Anule a no numerador e no denominador.
\frac{1}{a^{5}}
Anule -a^{2} no numerador e no denominador.
\frac{\mathrm{d}}{\mathrm{d}a}(\frac{\left(-a^{2}\right)a}{-a^{8}})
Expresse \frac{-a^{2}}{-a^{8}}a como uma fração única.
\frac{\mathrm{d}}{\mathrm{d}a}(\frac{-a^{2}}{-a^{7}})
Anule a no numerador e no denominador.
\frac{\mathrm{d}}{\mathrm{d}a}(\frac{1}{a^{5}})
Anule -a^{2} no numerador e no denominador.
-\left(a^{5}\right)^{-1-1}\frac{\mathrm{d}}{\mathrm{d}a}(a^{5})
Se F é a composição de duas funções diferenciáveis f\left(u\right) e u=g\left(x\right), ou seja, se F\left(x\right)=f\left(g\left(x\right)\right), então a derivada de F é a derivada de f em relação a u vezes a derivada de g em relação a x, ou seja, \frac{\mathrm{d}}{\mathrm{d}x}(F)\left(x\right)=\frac{\mathrm{d}}{\mathrm{d}x}(f)\left(g\left(x\right)\right)\frac{\mathrm{d}}{\mathrm{d}x}(g)\left(x\right).
-\left(a^{5}\right)^{-2}\times 5a^{5-1}
A derivada de um polinómio é a soma das derivadas dos seus termos. A derivada de qualquer termo constante é 0. A derivada de ax^{n} é nax^{n-1}.
-5a^{4}\left(a^{5}\right)^{-2}
Simplifique.