Pular para o conteúdo principal
Avaliar
Tick mark Image
Fatorizar
Tick mark Image

Problemas Semelhantes da Pesquisa na Web

Compartilhar

\frac{\left(-\left(9\times 2\right)^{-4}\right)\times 3^{4}}{\left(2\times 3\right)^{3}\times 2^{2}\times 3^{3}-\left(2^{3}-3\right)^{-4}}
Calcule 3 elevado a 2 e obtenha 9.
\frac{\left(-18^{-4}\right)\times 3^{4}}{\left(2\times 3\right)^{3}\times 2^{2}\times 3^{3}-\left(2^{3}-3\right)^{-4}}
Multiplique 9 e 2 para obter 18.
\frac{-\frac{1}{104976}\times 3^{4}}{\left(2\times 3\right)^{3}\times 2^{2}\times 3^{3}-\left(2^{3}-3\right)^{-4}}
Calcule 18 elevado a -4 e obtenha \frac{1}{104976}.
\frac{-\frac{1}{104976}\times 81}{\left(2\times 3\right)^{3}\times 2^{2}\times 3^{3}-\left(2^{3}-3\right)^{-4}}
Calcule 3 elevado a 4 e obtenha 81.
\frac{-\frac{1}{1296}}{\left(2\times 3\right)^{3}\times 2^{2}\times 3^{3}-\left(2^{3}-3\right)^{-4}}
Multiplique -\frac{1}{104976} e 81 para obter -\frac{1}{1296}.
\frac{-\frac{1}{1296}}{6^{3}\times 2^{2}\times 3^{3}-\left(2^{3}-3\right)^{-4}}
Multiplique 2 e 3 para obter 6.
\frac{-\frac{1}{1296}}{216\times 2^{2}\times 3^{3}-\left(2^{3}-3\right)^{-4}}
Calcule 6 elevado a 3 e obtenha 216.
\frac{-\frac{1}{1296}}{216\times 4\times 3^{3}-\left(2^{3}-3\right)^{-4}}
Calcule 2 elevado a 2 e obtenha 4.
\frac{-\frac{1}{1296}}{864\times 3^{3}-\left(2^{3}-3\right)^{-4}}
Multiplique 216 e 4 para obter 864.
\frac{-\frac{1}{1296}}{864\times 27-\left(2^{3}-3\right)^{-4}}
Calcule 3 elevado a 3 e obtenha 27.
\frac{-\frac{1}{1296}}{23328-\left(2^{3}-3\right)^{-4}}
Multiplique 864 e 27 para obter 23328.
\frac{-\frac{1}{1296}}{23328-\left(8-3\right)^{-4}}
Calcule 2 elevado a 3 e obtenha 8.
\frac{-\frac{1}{1296}}{23328-5^{-4}}
Subtraia 3 de 8 para obter 5.
\frac{-\frac{1}{1296}}{23328-\frac{1}{625}}
Calcule 5 elevado a -4 e obtenha \frac{1}{625}.
\frac{-\frac{1}{1296}}{\frac{14579999}{625}}
Subtraia \frac{1}{625} de 23328 para obter \frac{14579999}{625}.
-\frac{1}{1296}\times \frac{625}{14579999}
Divida -\frac{1}{1296} por \frac{14579999}{625} ao multiplicar -\frac{1}{1296} pelo recíproco de \frac{14579999}{625}.
-\frac{625}{18895678704}
Multiplique -\frac{1}{1296} e \frac{625}{14579999} para obter -\frac{625}{18895678704}.