Avaliar
\frac{x^{11}}{y^{2}}
Expandir
\frac{x^{11}}{y^{2}}
Compartilhar
Copiado para a área de transferência
\frac{\left(x^{3}\right)^{6}\left(y^{4}\right)^{6}\left(xy^{6}\right)^{-4}}{x^{3}y^{2}}
Expanda \left(x^{3}y^{4}\right)^{6}.
\frac{x^{18}\left(y^{4}\right)^{6}\left(xy^{6}\right)^{-4}}{x^{3}y^{2}}
Para aumentar uma potência para outra potência, multiplique os expoentes. Multiplique 3 e 6 para obter 18.
\frac{x^{18}y^{24}\left(xy^{6}\right)^{-4}}{x^{3}y^{2}}
Para aumentar uma potência para outra potência, multiplique os expoentes. Multiplique 4 e 6 para obter 24.
\frac{x^{18}y^{24}x^{-4}\left(y^{6}\right)^{-4}}{x^{3}y^{2}}
Expanda \left(xy^{6}\right)^{-4}.
\frac{x^{18}y^{24}x^{-4}y^{-24}}{x^{3}y^{2}}
Para aumentar uma potência para outra potência, multiplique os expoentes. Multiplique 6 e -4 para obter -24.
\frac{x^{14}y^{24}y^{-24}}{x^{3}y^{2}}
Para multiplicar as potências da mesma base, some os seus expoentes. Some 18 e -4 para obter 14.
\frac{x^{14}}{x^{3}y^{2}}
Multiplique y^{24} e y^{-24} para obter 1.
\frac{x^{11}}{y^{2}}
Anule x^{3} no numerador e no denominador.
\frac{\left(x^{3}\right)^{6}\left(y^{4}\right)^{6}\left(xy^{6}\right)^{-4}}{x^{3}y^{2}}
Expanda \left(x^{3}y^{4}\right)^{6}.
\frac{x^{18}\left(y^{4}\right)^{6}\left(xy^{6}\right)^{-4}}{x^{3}y^{2}}
Para aumentar uma potência para outra potência, multiplique os expoentes. Multiplique 3 e 6 para obter 18.
\frac{x^{18}y^{24}\left(xy^{6}\right)^{-4}}{x^{3}y^{2}}
Para aumentar uma potência para outra potência, multiplique os expoentes. Multiplique 4 e 6 para obter 24.
\frac{x^{18}y^{24}x^{-4}\left(y^{6}\right)^{-4}}{x^{3}y^{2}}
Expanda \left(xy^{6}\right)^{-4}.
\frac{x^{18}y^{24}x^{-4}y^{-24}}{x^{3}y^{2}}
Para aumentar uma potência para outra potência, multiplique os expoentes. Multiplique 6 e -4 para obter -24.
\frac{x^{14}y^{24}y^{-24}}{x^{3}y^{2}}
Para multiplicar as potências da mesma base, some os seus expoentes. Some 18 e -4 para obter 14.
\frac{x^{14}}{x^{3}y^{2}}
Multiplique y^{24} e y^{-24} para obter 1.
\frac{x^{11}}{y^{2}}
Anule x^{3} no numerador e no denominador.
Exemplos
Equação quadrática
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometria
4 \sin \theta \cos \theta = 2 \sin \theta
Equação linear
y = 3x + 4
Aritmética
699 * 533
Matriz
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Equação simultânea
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferenciação
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integração
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limites
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}