Avaliar
\frac{1}{x\left(x-2y\right)}
Expandir
\frac{1}{x\left(x-2y\right)}
Compartilhar
Copiado para a área de transferência
\frac{\left(\frac{\left(x-2y\right)\left(x-2y\right)}{\left(x-2y\right)\left(x+2y\right)}+\frac{\left(x+2y\right)\left(x+2y\right)}{\left(x-2y\right)\left(x+2y\right)}\right)\left(1+\frac{x^{2}+4y^{2}}{4xy}\right)}{\frac{x^{2}+4y^{2}}{2xy}\left(x^{2}+2xy\right)}
Para adicionar ou subtrair expressões, expanda-as para que os denominadores sejam iguais. O mínimo múltiplo comum de x+2y e x-2y é \left(x-2y\right)\left(x+2y\right). Multiplique \frac{x-2y}{x+2y} vezes \frac{x-2y}{x-2y}. Multiplique \frac{x+2y}{x-2y} vezes \frac{x+2y}{x+2y}.
\frac{\frac{\left(x-2y\right)\left(x-2y\right)+\left(x+2y\right)\left(x+2y\right)}{\left(x-2y\right)\left(x+2y\right)}\left(1+\frac{x^{2}+4y^{2}}{4xy}\right)}{\frac{x^{2}+4y^{2}}{2xy}\left(x^{2}+2xy\right)}
Uma vez que \frac{\left(x-2y\right)\left(x-2y\right)}{\left(x-2y\right)\left(x+2y\right)} e \frac{\left(x+2y\right)\left(x+2y\right)}{\left(x-2y\right)\left(x+2y\right)} têm o mesmo denominador, some-os ao somar os respetivos numeradores.
\frac{\frac{x^{2}-2xy-2xy+4y^{2}+x^{2}+2xy+2xy+4y^{2}}{\left(x-2y\right)\left(x+2y\right)}\left(1+\frac{x^{2}+4y^{2}}{4xy}\right)}{\frac{x^{2}+4y^{2}}{2xy}\left(x^{2}+2xy\right)}
Efetue as multiplicações em \left(x-2y\right)\left(x-2y\right)+\left(x+2y\right)\left(x+2y\right).
\frac{\frac{2x^{2}+8y^{2}}{\left(x-2y\right)\left(x+2y\right)}\left(1+\frac{x^{2}+4y^{2}}{4xy}\right)}{\frac{x^{2}+4y^{2}}{2xy}\left(x^{2}+2xy\right)}
Combine termos semelhantes em x^{2}-2xy-2xy+4y^{2}+x^{2}+2xy+2xy+4y^{2}.
\frac{\frac{2x^{2}+8y^{2}}{\left(x-2y\right)\left(x+2y\right)}\left(\frac{4xy}{4xy}+\frac{x^{2}+4y^{2}}{4xy}\right)}{\frac{x^{2}+4y^{2}}{2xy}\left(x^{2}+2xy\right)}
Para adicionar ou subtrair expressões, expanda-as para que os denominadores sejam iguais. Multiplique 1 vezes \frac{4xy}{4xy}.
\frac{\frac{2x^{2}+8y^{2}}{\left(x-2y\right)\left(x+2y\right)}\times \frac{4xy+x^{2}+4y^{2}}{4xy}}{\frac{x^{2}+4y^{2}}{2xy}\left(x^{2}+2xy\right)}
Uma vez que \frac{4xy}{4xy} e \frac{x^{2}+4y^{2}}{4xy} têm o mesmo denominador, some-os ao somar os respetivos numeradores.
\frac{\frac{\left(2x^{2}+8y^{2}\right)\left(4xy+x^{2}+4y^{2}\right)}{\left(x-2y\right)\left(x+2y\right)\times 4xy}}{\frac{x^{2}+4y^{2}}{2xy}\left(x^{2}+2xy\right)}
Multiplique \frac{2x^{2}+8y^{2}}{\left(x-2y\right)\left(x+2y\right)} vezes \frac{4xy+x^{2}+4y^{2}}{4xy} ao multiplicar o numerador vezes o numerador e o denominador vezes o denominador.
\frac{\frac{\left(2x^{2}+8y^{2}\right)\left(4xy+x^{2}+4y^{2}\right)}{\left(x-2y\right)\left(x+2y\right)\times 4xy}}{\frac{\left(x^{2}+4y^{2}\right)\left(x^{2}+2xy\right)}{2xy}}
Expresse \frac{x^{2}+4y^{2}}{2xy}\left(x^{2}+2xy\right) como uma fração única.
\frac{\left(2x^{2}+8y^{2}\right)\left(4xy+x^{2}+4y^{2}\right)\times 2xy}{\left(x-2y\right)\left(x+2y\right)\times 4xy\left(x^{2}+4y^{2}\right)\left(x^{2}+2xy\right)}
Divida \frac{\left(2x^{2}+8y^{2}\right)\left(4xy+x^{2}+4y^{2}\right)}{\left(x-2y\right)\left(x+2y\right)\times 4xy} por \frac{\left(x^{2}+4y^{2}\right)\left(x^{2}+2xy\right)}{2xy} ao multiplicar \frac{\left(2x^{2}+8y^{2}\right)\left(4xy+x^{2}+4y^{2}\right)}{\left(x-2y\right)\left(x+2y\right)\times 4xy} pelo recíproco de \frac{\left(x^{2}+4y^{2}\right)\left(x^{2}+2xy\right)}{2xy}.
\frac{\left(2x^{2}+8y^{2}\right)\left(x^{2}+4xy+4y^{2}\right)}{2\left(x-2y\right)\left(x+2y\right)\left(x^{2}+4y^{2}\right)\left(x^{2}+2xy\right)}
Anule 2xy no numerador e no denominador.
\frac{2\left(x+2y\right)^{2}\left(x^{2}+4y^{2}\right)}{2x\left(x-2y\right)\left(x+2y\right)^{2}\left(x^{2}+4y^{2}\right)}
Fatorize as expressões que ainda não foram fatorizadas.
\frac{1}{x\left(x-2y\right)}
Anule 2\left(x+2y\right)^{2}\left(x^{2}+4y^{2}\right) no numerador e no denominador.
\frac{1}{x^{2}-2xy}
Expanda a expressão.
\frac{\left(\frac{\left(x-2y\right)\left(x-2y\right)}{\left(x-2y\right)\left(x+2y\right)}+\frac{\left(x+2y\right)\left(x+2y\right)}{\left(x-2y\right)\left(x+2y\right)}\right)\left(1+\frac{x^{2}+4y^{2}}{4xy}\right)}{\frac{x^{2}+4y^{2}}{2xy}\left(x^{2}+2xy\right)}
Para adicionar ou subtrair expressões, expanda-as para que os denominadores sejam iguais. O mínimo múltiplo comum de x+2y e x-2y é \left(x-2y\right)\left(x+2y\right). Multiplique \frac{x-2y}{x+2y} vezes \frac{x-2y}{x-2y}. Multiplique \frac{x+2y}{x-2y} vezes \frac{x+2y}{x+2y}.
\frac{\frac{\left(x-2y\right)\left(x-2y\right)+\left(x+2y\right)\left(x+2y\right)}{\left(x-2y\right)\left(x+2y\right)}\left(1+\frac{x^{2}+4y^{2}}{4xy}\right)}{\frac{x^{2}+4y^{2}}{2xy}\left(x^{2}+2xy\right)}
Uma vez que \frac{\left(x-2y\right)\left(x-2y\right)}{\left(x-2y\right)\left(x+2y\right)} e \frac{\left(x+2y\right)\left(x+2y\right)}{\left(x-2y\right)\left(x+2y\right)} têm o mesmo denominador, some-os ao somar os respetivos numeradores.
\frac{\frac{x^{2}-2xy-2xy+4y^{2}+x^{2}+2xy+2xy+4y^{2}}{\left(x-2y\right)\left(x+2y\right)}\left(1+\frac{x^{2}+4y^{2}}{4xy}\right)}{\frac{x^{2}+4y^{2}}{2xy}\left(x^{2}+2xy\right)}
Efetue as multiplicações em \left(x-2y\right)\left(x-2y\right)+\left(x+2y\right)\left(x+2y\right).
\frac{\frac{2x^{2}+8y^{2}}{\left(x-2y\right)\left(x+2y\right)}\left(1+\frac{x^{2}+4y^{2}}{4xy}\right)}{\frac{x^{2}+4y^{2}}{2xy}\left(x^{2}+2xy\right)}
Combine termos semelhantes em x^{2}-2xy-2xy+4y^{2}+x^{2}+2xy+2xy+4y^{2}.
\frac{\frac{2x^{2}+8y^{2}}{\left(x-2y\right)\left(x+2y\right)}\left(\frac{4xy}{4xy}+\frac{x^{2}+4y^{2}}{4xy}\right)}{\frac{x^{2}+4y^{2}}{2xy}\left(x^{2}+2xy\right)}
Para adicionar ou subtrair expressões, expanda-as para que os denominadores sejam iguais. Multiplique 1 vezes \frac{4xy}{4xy}.
\frac{\frac{2x^{2}+8y^{2}}{\left(x-2y\right)\left(x+2y\right)}\times \frac{4xy+x^{2}+4y^{2}}{4xy}}{\frac{x^{2}+4y^{2}}{2xy}\left(x^{2}+2xy\right)}
Uma vez que \frac{4xy}{4xy} e \frac{x^{2}+4y^{2}}{4xy} têm o mesmo denominador, some-os ao somar os respetivos numeradores.
\frac{\frac{\left(2x^{2}+8y^{2}\right)\left(4xy+x^{2}+4y^{2}\right)}{\left(x-2y\right)\left(x+2y\right)\times 4xy}}{\frac{x^{2}+4y^{2}}{2xy}\left(x^{2}+2xy\right)}
Multiplique \frac{2x^{2}+8y^{2}}{\left(x-2y\right)\left(x+2y\right)} vezes \frac{4xy+x^{2}+4y^{2}}{4xy} ao multiplicar o numerador vezes o numerador e o denominador vezes o denominador.
\frac{\frac{\left(2x^{2}+8y^{2}\right)\left(4xy+x^{2}+4y^{2}\right)}{\left(x-2y\right)\left(x+2y\right)\times 4xy}}{\frac{\left(x^{2}+4y^{2}\right)\left(x^{2}+2xy\right)}{2xy}}
Expresse \frac{x^{2}+4y^{2}}{2xy}\left(x^{2}+2xy\right) como uma fração única.
\frac{\left(2x^{2}+8y^{2}\right)\left(4xy+x^{2}+4y^{2}\right)\times 2xy}{\left(x-2y\right)\left(x+2y\right)\times 4xy\left(x^{2}+4y^{2}\right)\left(x^{2}+2xy\right)}
Divida \frac{\left(2x^{2}+8y^{2}\right)\left(4xy+x^{2}+4y^{2}\right)}{\left(x-2y\right)\left(x+2y\right)\times 4xy} por \frac{\left(x^{2}+4y^{2}\right)\left(x^{2}+2xy\right)}{2xy} ao multiplicar \frac{\left(2x^{2}+8y^{2}\right)\left(4xy+x^{2}+4y^{2}\right)}{\left(x-2y\right)\left(x+2y\right)\times 4xy} pelo recíproco de \frac{\left(x^{2}+4y^{2}\right)\left(x^{2}+2xy\right)}{2xy}.
\frac{\left(2x^{2}+8y^{2}\right)\left(x^{2}+4xy+4y^{2}\right)}{2\left(x-2y\right)\left(x+2y\right)\left(x^{2}+4y^{2}\right)\left(x^{2}+2xy\right)}
Anule 2xy no numerador e no denominador.
\frac{2\left(x+2y\right)^{2}\left(x^{2}+4y^{2}\right)}{2x\left(x-2y\right)\left(x+2y\right)^{2}\left(x^{2}+4y^{2}\right)}
Fatorize as expressões que ainda não foram fatorizadas.
\frac{1}{x\left(x-2y\right)}
Anule 2\left(x+2y\right)^{2}\left(x^{2}+4y^{2}\right) no numerador e no denominador.
\frac{1}{x^{2}-2xy}
Expanda a expressão.
Exemplos
Equação quadrática
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometria
4 \sin \theta \cos \theta = 2 \sin \theta
Equação linear
y = 3x + 4
Aritmética
699 * 533
Matriz
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Equação simultânea
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferenciação
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integração
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limites
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}