Pular para o conteúdo principal
Avaliar
Tick mark Image
Fatorizar
Tick mark Image

Problemas Semelhantes da Pesquisa na Web

Compartilhar

\frac{\frac{\frac{1}{2}}{\left(\frac{2}{3}\right)^{-1}}}{\left(1-\frac{1}{3}\right)\times \frac{2}{4}+\frac{1}{2}}+\frac{\sqrt{1-\frac{16}{25}}}{\frac{\frac{4}{5}}{\left(\frac{15}{2}\right)^{1}}}
Calcule \sqrt[5]{\frac{1}{32}} e obtenha \frac{1}{2}.
\frac{\frac{\frac{1}{2}}{\frac{3}{2}}}{\left(1-\frac{1}{3}\right)\times \frac{2}{4}+\frac{1}{2}}+\frac{\sqrt{1-\frac{16}{25}}}{\frac{\frac{4}{5}}{\left(\frac{15}{2}\right)^{1}}}
Calcule \frac{2}{3} elevado a -1 e obtenha \frac{3}{2}.
\frac{\frac{1}{2}\times \frac{2}{3}}{\left(1-\frac{1}{3}\right)\times \frac{2}{4}+\frac{1}{2}}+\frac{\sqrt{1-\frac{16}{25}}}{\frac{\frac{4}{5}}{\left(\frac{15}{2}\right)^{1}}}
Divida \frac{1}{2} por \frac{3}{2} ao multiplicar \frac{1}{2} pelo recíproco de \frac{3}{2}.
\frac{\frac{1}{3}}{\left(1-\frac{1}{3}\right)\times \frac{2}{4}+\frac{1}{2}}+\frac{\sqrt{1-\frac{16}{25}}}{\frac{\frac{4}{5}}{\left(\frac{15}{2}\right)^{1}}}
Multiplique \frac{1}{2} e \frac{2}{3} para obter \frac{1}{3}.
\frac{\frac{1}{3}}{\frac{2}{3}\times \frac{2}{4}+\frac{1}{2}}+\frac{\sqrt{1-\frac{16}{25}}}{\frac{\frac{4}{5}}{\left(\frac{15}{2}\right)^{1}}}
Subtraia \frac{1}{3} de 1 para obter \frac{2}{3}.
\frac{\frac{1}{3}}{\frac{2}{3}\times \frac{1}{2}+\frac{1}{2}}+\frac{\sqrt{1-\frac{16}{25}}}{\frac{\frac{4}{5}}{\left(\frac{15}{2}\right)^{1}}}
Reduza a fração \frac{2}{4} para os termos mais baixos ao retirar e anular 2.
\frac{\frac{1}{3}}{\frac{1}{3}+\frac{1}{2}}+\frac{\sqrt{1-\frac{16}{25}}}{\frac{\frac{4}{5}}{\left(\frac{15}{2}\right)^{1}}}
Multiplique \frac{2}{3} e \frac{1}{2} para obter \frac{1}{3}.
\frac{\frac{1}{3}}{\frac{5}{6}}+\frac{\sqrt{1-\frac{16}{25}}}{\frac{\frac{4}{5}}{\left(\frac{15}{2}\right)^{1}}}
Some \frac{1}{3} e \frac{1}{2} para obter \frac{5}{6}.
\frac{1}{3}\times \frac{6}{5}+\frac{\sqrt{1-\frac{16}{25}}}{\frac{\frac{4}{5}}{\left(\frac{15}{2}\right)^{1}}}
Divida \frac{1}{3} por \frac{5}{6} ao multiplicar \frac{1}{3} pelo recíproco de \frac{5}{6}.
\frac{2}{5}+\frac{\sqrt{1-\frac{16}{25}}}{\frac{\frac{4}{5}}{\left(\frac{15}{2}\right)^{1}}}
Multiplique \frac{1}{3} e \frac{6}{5} para obter \frac{2}{5}.
\frac{2}{5}+\frac{\sqrt{\frac{9}{25}}}{\frac{\frac{4}{5}}{\left(\frac{15}{2}\right)^{1}}}
Subtraia \frac{16}{25} de 1 para obter \frac{9}{25}.
\frac{2}{5}+\frac{\frac{3}{5}}{\frac{\frac{4}{5}}{\left(\frac{15}{2}\right)^{1}}}
Reescreva a raiz quadrada da divisão \frac{9}{25} à medida que a divisão de raízes quadradas \frac{\sqrt{9}}{\sqrt{25}}. Calcule a raiz quadrada do numerador e do denominador.
\frac{2}{5}+\frac{\frac{3}{5}}{\frac{\frac{4}{5}}{\frac{15}{2}}}
Calcule \frac{15}{2} elevado a 1 e obtenha \frac{15}{2}.
\frac{2}{5}+\frac{\frac{3}{5}}{\frac{4}{5}\times \frac{2}{15}}
Divida \frac{4}{5} por \frac{15}{2} ao multiplicar \frac{4}{5} pelo recíproco de \frac{15}{2}.
\frac{2}{5}+\frac{\frac{3}{5}}{\frac{8}{75}}
Multiplique \frac{4}{5} e \frac{2}{15} para obter \frac{8}{75}.
\frac{2}{5}+\frac{3}{5}\times \frac{75}{8}
Divida \frac{3}{5} por \frac{8}{75} ao multiplicar \frac{3}{5} pelo recíproco de \frac{8}{75}.
\frac{2}{5}+\frac{45}{8}
Multiplique \frac{3}{5} e \frac{75}{8} para obter \frac{45}{8}.
\frac{241}{40}
Some \frac{2}{5} e \frac{45}{8} para obter \frac{241}{40}.