Pular para o conteúdo principal
Avaliar
Tick mark Image

Problemas Semelhantes da Pesquisa na Web

Compartilhar

\frac{2-\sqrt{3}}{\sqrt{7}+\sqrt{3}}+\frac{\sqrt{4}+\sqrt{3}}{\sqrt{7}-\sqrt{3}}
Calcule a raiz quadrada de 4 e obtenha 2.
\frac{\left(2-\sqrt{3}\right)\left(\sqrt{7}-\sqrt{3}\right)}{\left(\sqrt{7}+\sqrt{3}\right)\left(\sqrt{7}-\sqrt{3}\right)}+\frac{\sqrt{4}+\sqrt{3}}{\sqrt{7}-\sqrt{3}}
Racionalize o denominador de \frac{2-\sqrt{3}}{\sqrt{7}+\sqrt{3}} ao multiplicar o numerador e o denominador por \sqrt{7}-\sqrt{3}.
\frac{\left(2-\sqrt{3}\right)\left(\sqrt{7}-\sqrt{3}\right)}{\left(\sqrt{7}\right)^{2}-\left(\sqrt{3}\right)^{2}}+\frac{\sqrt{4}+\sqrt{3}}{\sqrt{7}-\sqrt{3}}
Considere \left(\sqrt{7}+\sqrt{3}\right)\left(\sqrt{7}-\sqrt{3}\right). A multiplicação pode ser transformada na diferença dos quadrados através da regra: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(2-\sqrt{3}\right)\left(\sqrt{7}-\sqrt{3}\right)}{7-3}+\frac{\sqrt{4}+\sqrt{3}}{\sqrt{7}-\sqrt{3}}
Calcule o quadrado de \sqrt{7}. Calcule o quadrado de \sqrt{3}.
\frac{\left(2-\sqrt{3}\right)\left(\sqrt{7}-\sqrt{3}\right)}{4}+\frac{\sqrt{4}+\sqrt{3}}{\sqrt{7}-\sqrt{3}}
Subtraia 3 de 7 para obter 4.
\frac{\left(2-\sqrt{3}\right)\left(\sqrt{7}-\sqrt{3}\right)}{4}+\frac{2+\sqrt{3}}{\sqrt{7}-\sqrt{3}}
Calcule a raiz quadrada de 4 e obtenha 2.
\frac{\left(2-\sqrt{3}\right)\left(\sqrt{7}-\sqrt{3}\right)}{4}+\frac{\left(2+\sqrt{3}\right)\left(\sqrt{7}+\sqrt{3}\right)}{\left(\sqrt{7}-\sqrt{3}\right)\left(\sqrt{7}+\sqrt{3}\right)}
Racionalize o denominador de \frac{2+\sqrt{3}}{\sqrt{7}-\sqrt{3}} ao multiplicar o numerador e o denominador por \sqrt{7}+\sqrt{3}.
\frac{\left(2-\sqrt{3}\right)\left(\sqrt{7}-\sqrt{3}\right)}{4}+\frac{\left(2+\sqrt{3}\right)\left(\sqrt{7}+\sqrt{3}\right)}{\left(\sqrt{7}\right)^{2}-\left(\sqrt{3}\right)^{2}}
Considere \left(\sqrt{7}-\sqrt{3}\right)\left(\sqrt{7}+\sqrt{3}\right). A multiplicação pode ser transformada na diferença dos quadrados através da regra: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(2-\sqrt{3}\right)\left(\sqrt{7}-\sqrt{3}\right)}{4}+\frac{\left(2+\sqrt{3}\right)\left(\sqrt{7}+\sqrt{3}\right)}{7-3}
Calcule o quadrado de \sqrt{7}. Calcule o quadrado de \sqrt{3}.
\frac{\left(2-\sqrt{3}\right)\left(\sqrt{7}-\sqrt{3}\right)}{4}+\frac{\left(2+\sqrt{3}\right)\left(\sqrt{7}+\sqrt{3}\right)}{4}
Subtraia 3 de 7 para obter 4.
\frac{\left(2-\sqrt{3}\right)\left(\sqrt{7}-\sqrt{3}\right)+\left(2+\sqrt{3}\right)\left(\sqrt{7}+\sqrt{3}\right)}{4}
Uma vez que \frac{\left(2-\sqrt{3}\right)\left(\sqrt{7}-\sqrt{3}\right)}{4} e \frac{\left(2+\sqrt{3}\right)\left(\sqrt{7}+\sqrt{3}\right)}{4} têm o mesmo denominador, some-os ao somar os respetivos numeradores.
\frac{2\sqrt{7}-2\sqrt{3}-\sqrt{21}+3+2\sqrt{7}+2\sqrt{3}+\sqrt{21}+3}{4}
Efetue as multiplicações em \left(2-\sqrt{3}\right)\left(\sqrt{7}-\sqrt{3}\right)+\left(2+\sqrt{3}\right)\left(\sqrt{7}+\sqrt{3}\right).
\frac{4\sqrt{7}+6}{4}
Efetue os cálculos em 2\sqrt{7}-2\sqrt{3}-\sqrt{21}+3+2\sqrt{7}+2\sqrt{3}+\sqrt{21}+3.