Avaliar
2\sqrt{3}\left(\sqrt{2}+1\right)\approx 8,363081101
Fatorizar
2 \sqrt{3} {(\sqrt{2} + 1)} = 8,363081101
Compartilhar
Copiado para a área de transferência
\frac{2\sqrt{3}}{\sqrt{2}-1}
Combine \sqrt{3} e \sqrt{3} para obter 2\sqrt{3}.
\frac{2\sqrt{3}\left(\sqrt{2}+1\right)}{\left(\sqrt{2}-1\right)\left(\sqrt{2}+1\right)}
Racionalize o denominador de \frac{2\sqrt{3}}{\sqrt{2}-1} ao multiplicar o numerador e o denominador por \sqrt{2}+1.
\frac{2\sqrt{3}\left(\sqrt{2}+1\right)}{\left(\sqrt{2}\right)^{2}-1^{2}}
Considere \left(\sqrt{2}-1\right)\left(\sqrt{2}+1\right). A multiplicação pode ser transformada na diferença dos quadrados através da regra: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{2\sqrt{3}\left(\sqrt{2}+1\right)}{2-1}
Calcule o quadrado de \sqrt{2}. Calcule o quadrado de 1.
\frac{2\sqrt{3}\left(\sqrt{2}+1\right)}{1}
Subtraia 1 de 2 para obter 1.
2\sqrt{3}\left(\sqrt{2}+1\right)
Qualquer número dividido por um resulta no próprio número.
2\sqrt{3}\sqrt{2}+2\sqrt{3}
Utilize a propriedade distributiva para multiplicar 2\sqrt{3} por \sqrt{2}+1.
2\sqrt{6}+2\sqrt{3}
Para multiplicar \sqrt{3} e \sqrt{2}, multiplique os números sob a raiz quadrada.
Exemplos
Equação quadrática
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometria
4 \sin \theta \cos \theta = 2 \sin \theta
Equação linear
y = 3x + 4
Aritmética
699 * 533
Matriz
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Equação simultânea
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferenciação
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integração
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limites
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}