Avaliar
-\frac{\sqrt{3}}{2}\approx -0,866025404
Compartilhar
Copiado para a área de transferência
\cos(\frac{\pi }{2}+\frac{\pi }{3})=\cos(\frac{\pi }{2})\cos(\frac{\pi }{3})-\sin(\frac{\pi }{3})\sin(\frac{\pi }{2})
Utilize \cos(x+y)=\cos(x)\cos(y)-\sin(y)\sin(x) onde x=\frac{\pi }{2} e y=\frac{\pi }{3} para obter o resultado.
0\cos(\frac{\pi }{3})-\sin(\frac{\pi }{3})\sin(\frac{\pi }{2})
Obtenha o valor de \cos(\frac{\pi }{2}) a partir da tabela de valores trigonométricos.
0\times \frac{1}{2}-\sin(\frac{\pi }{3})\sin(\frac{\pi }{2})
Obtenha o valor de \cos(\frac{\pi }{3}) a partir da tabela de valores trigonométricos.
0\times \frac{1}{2}-\frac{\sqrt{3}}{2}\sin(\frac{\pi }{2})
Obtenha o valor de \sin(\frac{\pi }{3}) a partir da tabela de valores trigonométricos.
0\times \frac{1}{2}-\frac{\sqrt{3}}{2}\times 1
Obtenha o valor de \sin(\frac{\pi }{2}) a partir da tabela de valores trigonométricos.
-\frac{\sqrt{3}}{2}
Efetue os cálculos.
Exemplos
Equação quadrática
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometria
4 \sin \theta \cos \theta = 2 \sin \theta
Equação linear
y = 3x + 4
Aritmética
699 * 533
Matriz
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Equação simultânea
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferenciação
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integração
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limites
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}