Pular para o conteúdo principal
Avaliar
Tick mark Image
Expandir
Tick mark Image

Problemas Semelhantes da Pesquisa na Web

Compartilhar

\frac{x^{2}y^{2}x-2x^{3}y^{2}}{-x^{2}}+\frac{2x^{2}y^{3}+\frac{-3x^{4}y^{5}}{\left(-\frac{1}{2}xy\right)^{2}}}{\frac{-3x^{3}y^{3}}{\left(2xy\right)^{2}}+2xy}
Expanda \left(xy\right)^{2}.
\frac{x^{3}y^{2}-2x^{3}y^{2}}{-x^{2}}+\frac{2x^{2}y^{3}+\frac{-3x^{4}y^{5}}{\left(-\frac{1}{2}xy\right)^{2}}}{\frac{-3x^{3}y^{3}}{\left(2xy\right)^{2}}+2xy}
Para multiplicar as potências da mesma base, some os seus expoentes. Some 2 e 1 para obter 3.
\frac{-x^{3}y^{2}}{-x^{2}}+\frac{2x^{2}y^{3}+\frac{-3x^{4}y^{5}}{\left(-\frac{1}{2}xy\right)^{2}}}{\frac{-3x^{3}y^{3}}{\left(2xy\right)^{2}}+2xy}
Combine x^{3}y^{2} e -2x^{3}y^{2} para obter -x^{3}y^{2}.
\frac{-x^{3}y^{2}}{-x^{2}}+\frac{2x^{2}y^{3}+\frac{-3x^{4}y^{5}}{\left(-\frac{1}{2}\right)^{2}x^{2}y^{2}}}{\frac{-3x^{3}y^{3}}{\left(2xy\right)^{2}}+2xy}
Expanda \left(-\frac{1}{2}xy\right)^{2}.
\frac{-x^{3}y^{2}}{-x^{2}}+\frac{2x^{2}y^{3}+\frac{-3x^{4}y^{5}}{\frac{1}{4}x^{2}y^{2}}}{\frac{-3x^{3}y^{3}}{\left(2xy\right)^{2}}+2xy}
Calcule -\frac{1}{2} elevado a 2 e obtenha \frac{1}{4}.
\frac{-x^{3}y^{2}}{-x^{2}}+\frac{2x^{2}y^{3}+\frac{-3x^{2}y^{3}}{\frac{1}{4}}}{\frac{-3x^{3}y^{3}}{\left(2xy\right)^{2}}+2xy}
Anule x^{2}y^{2} no numerador e no denominador.
\frac{-x^{3}y^{2}}{-x^{2}}+\frac{2x^{2}y^{3}-3x^{2}y^{3}\times 4}{\frac{-3x^{3}y^{3}}{\left(2xy\right)^{2}}+2xy}
Divida -3x^{2}y^{3} por \frac{1}{4} ao multiplicar -3x^{2}y^{3} pelo recíproco de \frac{1}{4}.
\frac{-x^{3}y^{2}}{-x^{2}}+\frac{2x^{2}y^{3}-3x^{2}y^{3}\times 4}{\frac{-3x^{3}y^{3}}{2^{2}x^{2}y^{2}}+2xy}
Expanda \left(2xy\right)^{2}.
\frac{-x^{3}y^{2}}{-x^{2}}+\frac{2x^{2}y^{3}-3x^{2}y^{3}\times 4}{\frac{-3x^{3}y^{3}}{4x^{2}y^{2}}+2xy}
Calcule 2 elevado a 2 e obtenha 4.
\frac{-x^{3}y^{2}}{-x^{2}}+\frac{2x^{2}y^{3}-3x^{2}y^{3}\times 4}{\frac{-3xy}{4}+2xy}
Anule x^{2}y^{2} no numerador e no denominador.
\frac{-x^{3}y^{2}}{-x^{2}}+\frac{2x^{2}y^{3}-3x^{2}y^{3}\times 4}{\frac{-3xy}{4}+\frac{4\times 2xy}{4}}
Para adicionar ou subtrair expressões, expanda-as para que os denominadores sejam iguais. Multiplique 2xy vezes \frac{4}{4}.
\frac{-x^{3}y^{2}}{-x^{2}}+\frac{2x^{2}y^{3}-3x^{2}y^{3}\times 4}{\frac{-3xy+4\times 2xy}{4}}
Uma vez que \frac{-3xy}{4} e \frac{4\times 2xy}{4} têm o mesmo denominador, some-os ao somar os respetivos numeradores.
\frac{-x^{3}y^{2}}{-x^{2}}+\frac{2x^{2}y^{3}-3x^{2}y^{3}\times 4}{\frac{-3xy+8xy}{4}}
Efetue as multiplicações em -3xy+4\times 2xy.
\frac{-x^{3}y^{2}}{-x^{2}}+\frac{2x^{2}y^{3}-3x^{2}y^{3}\times 4}{\frac{5xy}{4}}
Combine termos semelhantes em -3xy+8xy.
\frac{-x^{3}y^{2}}{-x^{2}}+\frac{2x^{2}y^{3}-12x^{2}y^{3}}{\frac{5xy}{4}}
Multiplique -3 e 4 para obter -12.
\frac{-x^{3}y^{2}}{-x^{2}}+\frac{-10x^{2}y^{3}}{\frac{5xy}{4}}
Combine 2x^{2}y^{3} e -12x^{2}y^{3} para obter -10x^{2}y^{3}.
\frac{-x^{3}y^{2}}{-x^{2}}+\frac{-10x^{2}y^{3}\times 4}{5xy}
Divida -10x^{2}y^{3} por \frac{5xy}{4} ao multiplicar -10x^{2}y^{3} pelo recíproco de \frac{5xy}{4}.
\frac{-x^{3}y^{2}}{-x^{2}}-2\times 4xy^{2}
Anule 5xy no numerador e no denominador.
\frac{-x^{3}y^{2}}{-x^{2}}-8xy^{2}
Multiplique -2 e 4 para obter -8.
\frac{-x^{3}y^{2}}{-x^{2}}+\frac{-8xy^{2}\left(-1\right)x^{2}}{-x^{2}}
Para adicionar ou subtrair expressões, expanda-as para que os denominadores sejam iguais. Multiplique -8xy^{2} vezes \frac{-x^{2}}{-x^{2}}.
\frac{-x^{3}y^{2}-8xy^{2}\left(-1\right)x^{2}}{-x^{2}}
Uma vez que \frac{-x^{3}y^{2}}{-x^{2}} e \frac{-8xy^{2}\left(-1\right)x^{2}}{-x^{2}} têm o mesmo denominador, some-os ao somar os respetivos numeradores.
\frac{-x^{3}y^{2}+8x^{3}y^{2}}{-x^{2}}
Efetue as multiplicações em -x^{3}y^{2}-8xy^{2}\left(-1\right)x^{2}.
\frac{7x^{3}y^{2}}{-x^{2}}
Combine termos semelhantes em -x^{3}y^{2}+8x^{3}y^{2}.
\frac{7xy^{2}}{-1}
Anule x^{2} no numerador e no denominador.
\frac{x^{2}y^{2}x-2x^{3}y^{2}}{-x^{2}}+\frac{2x^{2}y^{3}+\frac{-3x^{4}y^{5}}{\left(-\frac{1}{2}xy\right)^{2}}}{\frac{-3x^{3}y^{3}}{\left(2xy\right)^{2}}+2xy}
Expanda \left(xy\right)^{2}.
\frac{x^{3}y^{2}-2x^{3}y^{2}}{-x^{2}}+\frac{2x^{2}y^{3}+\frac{-3x^{4}y^{5}}{\left(-\frac{1}{2}xy\right)^{2}}}{\frac{-3x^{3}y^{3}}{\left(2xy\right)^{2}}+2xy}
Para multiplicar as potências da mesma base, some os seus expoentes. Some 2 e 1 para obter 3.
\frac{-x^{3}y^{2}}{-x^{2}}+\frac{2x^{2}y^{3}+\frac{-3x^{4}y^{5}}{\left(-\frac{1}{2}xy\right)^{2}}}{\frac{-3x^{3}y^{3}}{\left(2xy\right)^{2}}+2xy}
Combine x^{3}y^{2} e -2x^{3}y^{2} para obter -x^{3}y^{2}.
\frac{-x^{3}y^{2}}{-x^{2}}+\frac{2x^{2}y^{3}+\frac{-3x^{4}y^{5}}{\left(-\frac{1}{2}\right)^{2}x^{2}y^{2}}}{\frac{-3x^{3}y^{3}}{\left(2xy\right)^{2}}+2xy}
Expanda \left(-\frac{1}{2}xy\right)^{2}.
\frac{-x^{3}y^{2}}{-x^{2}}+\frac{2x^{2}y^{3}+\frac{-3x^{4}y^{5}}{\frac{1}{4}x^{2}y^{2}}}{\frac{-3x^{3}y^{3}}{\left(2xy\right)^{2}}+2xy}
Calcule -\frac{1}{2} elevado a 2 e obtenha \frac{1}{4}.
\frac{-x^{3}y^{2}}{-x^{2}}+\frac{2x^{2}y^{3}+\frac{-3x^{2}y^{3}}{\frac{1}{4}}}{\frac{-3x^{3}y^{3}}{\left(2xy\right)^{2}}+2xy}
Anule x^{2}y^{2} no numerador e no denominador.
\frac{-x^{3}y^{2}}{-x^{2}}+\frac{2x^{2}y^{3}-3x^{2}y^{3}\times 4}{\frac{-3x^{3}y^{3}}{\left(2xy\right)^{2}}+2xy}
Divida -3x^{2}y^{3} por \frac{1}{4} ao multiplicar -3x^{2}y^{3} pelo recíproco de \frac{1}{4}.
\frac{-x^{3}y^{2}}{-x^{2}}+\frac{2x^{2}y^{3}-3x^{2}y^{3}\times 4}{\frac{-3x^{3}y^{3}}{2^{2}x^{2}y^{2}}+2xy}
Expanda \left(2xy\right)^{2}.
\frac{-x^{3}y^{2}}{-x^{2}}+\frac{2x^{2}y^{3}-3x^{2}y^{3}\times 4}{\frac{-3x^{3}y^{3}}{4x^{2}y^{2}}+2xy}
Calcule 2 elevado a 2 e obtenha 4.
\frac{-x^{3}y^{2}}{-x^{2}}+\frac{2x^{2}y^{3}-3x^{2}y^{3}\times 4}{\frac{-3xy}{4}+2xy}
Anule x^{2}y^{2} no numerador e no denominador.
\frac{-x^{3}y^{2}}{-x^{2}}+\frac{2x^{2}y^{3}-3x^{2}y^{3}\times 4}{\frac{-3xy}{4}+\frac{4\times 2xy}{4}}
Para adicionar ou subtrair expressões, expanda-as para que os denominadores sejam iguais. Multiplique 2xy vezes \frac{4}{4}.
\frac{-x^{3}y^{2}}{-x^{2}}+\frac{2x^{2}y^{3}-3x^{2}y^{3}\times 4}{\frac{-3xy+4\times 2xy}{4}}
Uma vez que \frac{-3xy}{4} e \frac{4\times 2xy}{4} têm o mesmo denominador, some-os ao somar os respetivos numeradores.
\frac{-x^{3}y^{2}}{-x^{2}}+\frac{2x^{2}y^{3}-3x^{2}y^{3}\times 4}{\frac{-3xy+8xy}{4}}
Efetue as multiplicações em -3xy+4\times 2xy.
\frac{-x^{3}y^{2}}{-x^{2}}+\frac{2x^{2}y^{3}-3x^{2}y^{3}\times 4}{\frac{5xy}{4}}
Combine termos semelhantes em -3xy+8xy.
\frac{-x^{3}y^{2}}{-x^{2}}+\frac{2x^{2}y^{3}-12x^{2}y^{3}}{\frac{5xy}{4}}
Multiplique -3 e 4 para obter -12.
\frac{-x^{3}y^{2}}{-x^{2}}+\frac{-10x^{2}y^{3}}{\frac{5xy}{4}}
Combine 2x^{2}y^{3} e -12x^{2}y^{3} para obter -10x^{2}y^{3}.
\frac{-x^{3}y^{2}}{-x^{2}}+\frac{-10x^{2}y^{3}\times 4}{5xy}
Divida -10x^{2}y^{3} por \frac{5xy}{4} ao multiplicar -10x^{2}y^{3} pelo recíproco de \frac{5xy}{4}.
\frac{-x^{3}y^{2}}{-x^{2}}-2\times 4xy^{2}
Anule 5xy no numerador e no denominador.
\frac{-x^{3}y^{2}}{-x^{2}}-8xy^{2}
Multiplique -2 e 4 para obter -8.
\frac{-x^{3}y^{2}}{-x^{2}}+\frac{-8xy^{2}\left(-1\right)x^{2}}{-x^{2}}
Para adicionar ou subtrair expressões, expanda-as para que os denominadores sejam iguais. Multiplique -8xy^{2} vezes \frac{-x^{2}}{-x^{2}}.
\frac{-x^{3}y^{2}-8xy^{2}\left(-1\right)x^{2}}{-x^{2}}
Uma vez que \frac{-x^{3}y^{2}}{-x^{2}} e \frac{-8xy^{2}\left(-1\right)x^{2}}{-x^{2}} têm o mesmo denominador, some-os ao somar os respetivos numeradores.
\frac{-x^{3}y^{2}+8x^{3}y^{2}}{-x^{2}}
Efetue as multiplicações em -x^{3}y^{2}-8xy^{2}\left(-1\right)x^{2}.
\frac{7x^{3}y^{2}}{-x^{2}}
Combine termos semelhantes em -x^{3}y^{2}+8x^{3}y^{2}.
\frac{7xy^{2}}{-1}
Anule x^{2} no numerador e no denominador.