Avaliar
-92a
Expandir
-92a
Compartilhar
Copiado para a área de transferência
\frac{368\left(\frac{3}{28}a^{3}b\left(-\frac{7}{4}\right)b-\left(-\frac{1}{8}a^{3}b\times 2b\right)\right)}{-\frac{1}{4}a^{2}b^{2}}
Para multiplicar as potências da mesma base, some os seus expoentes. Some 2 e 1 para obter 3.
\frac{368\left(\frac{3}{28}a^{3}b^{2}\left(-\frac{7}{4}\right)-\left(-\frac{1}{8}a^{3}b\times 2b\right)\right)}{-\frac{1}{4}a^{2}b^{2}}
Multiplique b e b para obter b^{2}.
\frac{368\left(\frac{3}{28}a^{3}b^{2}\left(-\frac{7}{4}\right)-\left(-\frac{1}{8}a^{3}b^{2}\times 2\right)\right)}{-\frac{1}{4}a^{2}b^{2}}
Multiplique b e b para obter b^{2}.
\frac{368\left(-\frac{3}{16}a^{3}b^{2}-\left(-\frac{1}{8}a^{3}b^{2}\times 2\right)\right)}{-\frac{1}{4}a^{2}b^{2}}
Multiplique \frac{3}{28} e -\frac{7}{4} para obter -\frac{3}{16}.
\frac{368\left(-\frac{3}{16}a^{3}b^{2}-\left(-\frac{1}{4}a^{3}b^{2}\right)\right)}{-\frac{1}{4}a^{2}b^{2}}
Multiplique -\frac{1}{8} e 2 para obter -\frac{1}{4}.
\frac{368\left(-\frac{3}{16}a^{3}b^{2}+\frac{1}{4}a^{3}b^{2}\right)}{-\frac{1}{4}a^{2}b^{2}}
O oposto de -\frac{1}{4}a^{3}b^{2} é \frac{1}{4}a^{3}b^{2}.
\frac{368\times \frac{1}{16}a^{3}b^{2}}{-\frac{1}{4}a^{2}b^{2}}
Combine -\frac{3}{16}a^{3}b^{2} e \frac{1}{4}a^{3}b^{2} para obter \frac{1}{16}a^{3}b^{2}.
\frac{23a^{3}b^{2}}{-\frac{1}{4}a^{2}b^{2}}
Multiplique 368 e \frac{1}{16} para obter 23.
\frac{23a}{-\frac{1}{4}}
Anule a^{2}b^{2} no numerador e no denominador.
\frac{23a\times 4}{-1}
Divida 23a por -\frac{1}{4} ao multiplicar 23a pelo recíproco de -\frac{1}{4}.
\frac{92a}{-1}
Multiplique 23 e 4 para obter 92.
-92a
Qualquer número dividido por -1 dá o seu oposto.
\frac{368\left(\frac{3}{28}a^{3}b\left(-\frac{7}{4}\right)b-\left(-\frac{1}{8}a^{3}b\times 2b\right)\right)}{-\frac{1}{4}a^{2}b^{2}}
Para multiplicar as potências da mesma base, some os seus expoentes. Some 2 e 1 para obter 3.
\frac{368\left(\frac{3}{28}a^{3}b^{2}\left(-\frac{7}{4}\right)-\left(-\frac{1}{8}a^{3}b\times 2b\right)\right)}{-\frac{1}{4}a^{2}b^{2}}
Multiplique b e b para obter b^{2}.
\frac{368\left(\frac{3}{28}a^{3}b^{2}\left(-\frac{7}{4}\right)-\left(-\frac{1}{8}a^{3}b^{2}\times 2\right)\right)}{-\frac{1}{4}a^{2}b^{2}}
Multiplique b e b para obter b^{2}.
\frac{368\left(-\frac{3}{16}a^{3}b^{2}-\left(-\frac{1}{8}a^{3}b^{2}\times 2\right)\right)}{-\frac{1}{4}a^{2}b^{2}}
Multiplique \frac{3}{28} e -\frac{7}{4} para obter -\frac{3}{16}.
\frac{368\left(-\frac{3}{16}a^{3}b^{2}-\left(-\frac{1}{4}a^{3}b^{2}\right)\right)}{-\frac{1}{4}a^{2}b^{2}}
Multiplique -\frac{1}{8} e 2 para obter -\frac{1}{4}.
\frac{368\left(-\frac{3}{16}a^{3}b^{2}+\frac{1}{4}a^{3}b^{2}\right)}{-\frac{1}{4}a^{2}b^{2}}
O oposto de -\frac{1}{4}a^{3}b^{2} é \frac{1}{4}a^{3}b^{2}.
\frac{368\times \frac{1}{16}a^{3}b^{2}}{-\frac{1}{4}a^{2}b^{2}}
Combine -\frac{3}{16}a^{3}b^{2} e \frac{1}{4}a^{3}b^{2} para obter \frac{1}{16}a^{3}b^{2}.
\frac{23a^{3}b^{2}}{-\frac{1}{4}a^{2}b^{2}}
Multiplique 368 e \frac{1}{16} para obter 23.
\frac{23a}{-\frac{1}{4}}
Anule a^{2}b^{2} no numerador e no denominador.
\frac{23a\times 4}{-1}
Divida 23a por -\frac{1}{4} ao multiplicar 23a pelo recíproco de -\frac{1}{4}.
\frac{92a}{-1}
Multiplique 23 e 4 para obter 92.
-92a
Qualquer número dividido por -1 dá o seu oposto.
Exemplos
Equação quadrática
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometria
4 \sin \theta \cos \theta = 2 \sin \theta
Equação linear
y = 3x + 4
Aritmética
699 * 533
Matriz
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Equação simultânea
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferenciação
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integração
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limites
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}