Avaliar
\frac{2581\sqrt{7530690}}{14490011488320}\approx 0,000000489
Compartilhar
Copiado para a área de transferência
\frac{32585-\frac{320688}{10}}{\sqrt{62280\times \frac{786^{2}}{10}\times 17412\times \frac{408^{2}}{10}}}
Multiplique 786 e 408 para obter 320688.
\frac{32585-\frac{160344}{5}}{\sqrt{62280\times \frac{786^{2}}{10}\times 17412\times \frac{408^{2}}{10}}}
Reduza a fração \frac{320688}{10} para os termos mais baixos ao retirar e anular 2.
\frac{\frac{162925}{5}-\frac{160344}{5}}{\sqrt{62280\times \frac{786^{2}}{10}\times 17412\times \frac{408^{2}}{10}}}
Converta 32585 na fração \frac{162925}{5}.
\frac{\frac{162925-160344}{5}}{\sqrt{62280\times \frac{786^{2}}{10}\times 17412\times \frac{408^{2}}{10}}}
Uma vez que \frac{162925}{5} e \frac{160344}{5} têm o mesmo denominador, subtraia-os ao subtrair os respetivos numeradores.
\frac{\frac{2581}{5}}{\sqrt{62280\times \frac{786^{2}}{10}\times 17412\times \frac{408^{2}}{10}}}
Subtraia 160344 de 162925 para obter 2581.
\frac{\frac{2581}{5}}{\sqrt{62280\times \frac{617796}{10}\times 17412\times \frac{408^{2}}{10}}}
Calcule 786 elevado a 2 e obtenha 617796.
\frac{\frac{2581}{5}}{\sqrt{62280\times \frac{308898}{5}\times 17412\times \frac{408^{2}}{10}}}
Reduza a fração \frac{617796}{10} para os termos mais baixos ao retirar e anular 2.
\frac{\frac{2581}{5}}{\sqrt{\frac{62280\times 308898}{5}\times 17412\times \frac{408^{2}}{10}}}
Expresse 62280\times \frac{308898}{5} como uma fração única.
\frac{\frac{2581}{5}}{\sqrt{\frac{19238167440}{5}\times 17412\times \frac{408^{2}}{10}}}
Multiplique 62280 e 308898 para obter 19238167440.
\frac{\frac{2581}{5}}{\sqrt{3847633488\times 17412\times \frac{408^{2}}{10}}}
Dividir 19238167440 por 5 para obter 3847633488.
\frac{\frac{2581}{5}}{\sqrt{66994994293056\times \frac{408^{2}}{10}}}
Multiplique 3847633488 e 17412 para obter 66994994293056.
\frac{\frac{2581}{5}}{\sqrt{66994994293056\times \frac{166464}{10}}}
Calcule 408 elevado a 2 e obtenha 166464.
\frac{\frac{2581}{5}}{\sqrt{66994994293056\times \frac{83232}{5}}}
Reduza a fração \frac{166464}{10} para os termos mais baixos ao retirar e anular 2.
\frac{\frac{2581}{5}}{\sqrt{\frac{66994994293056\times 83232}{5}}}
Expresse 66994994293056\times \frac{83232}{5} como uma fração única.
\frac{\frac{2581}{5}}{\sqrt{\frac{5576127364999636992}{5}}}
Multiplique 66994994293056 e 83232 para obter 5576127364999636992.
\frac{\frac{2581}{5}}{\frac{\sqrt{5576127364999636992}}{\sqrt{5}}}
Reescreva a raiz quadrada da divisão \sqrt{\frac{5576127364999636992}{5}} à medida que a divisão de raízes quadradas \frac{\sqrt{5576127364999636992}}{\sqrt{5}}.
\frac{\frac{2581}{5}}{\frac{1924128\sqrt{1506138}}{\sqrt{5}}}
Fatorize a expressão 5576127364999636992=1924128^{2}\times 1506138. Reescreva a raiz quadrada do produto \sqrt{1924128^{2}\times 1506138} à medida que o produto das raízes quadradas \sqrt{1924128^{2}}\sqrt{1506138}. Calcule a raiz quadrada de 1924128^{2}.
\frac{\frac{2581}{5}}{\frac{1924128\sqrt{1506138}\sqrt{5}}{\left(\sqrt{5}\right)^{2}}}
Racionalize o denominador de \frac{1924128\sqrt{1506138}}{\sqrt{5}} ao multiplicar o numerador e o denominador por \sqrt{5}.
\frac{\frac{2581}{5}}{\frac{1924128\sqrt{1506138}\sqrt{5}}{5}}
O quadrado de \sqrt{5} é 5.
\frac{\frac{2581}{5}}{\frac{1924128\sqrt{7530690}}{5}}
Para multiplicar \sqrt{1506138} e \sqrt{5}, multiplique os números sob a raiz quadrada.
\frac{2581\times 5}{5\times 1924128\sqrt{7530690}}
Divida \frac{2581}{5} por \frac{1924128\sqrt{7530690}}{5} ao multiplicar \frac{2581}{5} pelo recíproco de \frac{1924128\sqrt{7530690}}{5}.
\frac{2581}{1924128\sqrt{7530690}}
Anule 5 no numerador e no denominador.
\frac{2581\sqrt{7530690}}{1924128\left(\sqrt{7530690}\right)^{2}}
Racionalize o denominador de \frac{2581}{1924128\sqrt{7530690}} ao multiplicar o numerador e o denominador por \sqrt{7530690}.
\frac{2581\sqrt{7530690}}{1924128\times 7530690}
O quadrado de \sqrt{7530690} é 7530690.
\frac{2581\sqrt{7530690}}{14490011488320}
Multiplique 1924128 e 7530690 para obter 14490011488320.
Exemplos
Equação quadrática
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometria
4 \sin \theta \cos \theta = 2 \sin \theta
Equação linear
y = 3x + 4
Aritmética
699 * 533
Matriz
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Equação simultânea
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferenciação
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integração
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limites
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}