ਮੁਲਾਂਕਣ ਕਰੋ
\left(\begin{matrix}1&3&21\\6&4&35\end{matrix}\right)
ਟ੍ਰਾਂਸਪੋਜ਼ ਮੈਟ੍ਰਿਕਸ
\left(\begin{matrix}1&6\\3&4\\21&35\end{matrix}\right)
ਸਾਂਝਾ ਕਰੋ
ਕਲਿੱਪਬੋਰਡ 'ਤੇ ਕਾਪੀ ਕੀਤਾ ਗਿਆ
\left(\begin{matrix}2&3\\5&4\end{matrix}\right)\left(\begin{matrix}2&0&3\\-1&1&5\end{matrix}\right)
ਮੈਟ੍ਰਿਕਸ ਗੁਣਨ ਨੂੰ ਪਰਿਭਾਸ਼ਿਤ ਕੀਤਾ ਜਾਂਦਾ ਹੈ ਜੇ ਪਹਿਲੇ ਮੈਟ੍ਰਿਕਸ ਦੇ ਕੋਲਮਾਂ ਦੀ ਸੰਖਿਆ ਦੂਜੇ ਮੈਟ੍ਰਿਕਸ ਦੀਆਂ ਪੰਗਤੀਆਂ ਦੀ ਸੰਖਿਆ ਦੇ ਸਮਾਨ ਹੁੰਦੀ ਹੈ।
\left(\begin{matrix}2\times 2+3\left(-1\right)&&\\&&\end{matrix}\right)
ਪਹਿਲੇ ਮੈਟ੍ਰਿਕਸ ਦੀ ਪਹਿਲੀ ਪੰਗਤੀ ਦੇ ਹਰ ਐਲੀਮੈਂਟ ਨੂੰ ਦੂਜੇ ਮੈਟ੍ਰਿਕਸ ਦੇ ਪਹਿਲੇ ਕੋਲਮ ਦੇ ਸਬੰਧਤ ਐਲੀਮੈਂਟ ਦੇ ਨਾਲ ਗੁਣਾ ਕਰੋ ਅਤੇ ਫੇਰ ਗੁਣਨਫਲ ਮੈਟ੍ਰਿਕਸ ਦੀ ਪਹਿਲੀ ਪੰਗਤੀ, ਪਹਿਲੇ ਕੋਲਮ ਵਿੱਚ ਐਲੀਮੈਂਟ ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ ਇਹਨਾਂ ਗੁਣਨਫਲਾਂ ਨੂੰ ਜੋੜੋ।
\left(\begin{matrix}2\times 2+3\left(-1\right)&3&2\times 3+3\times 5\\5\times 2+4\left(-1\right)&4&5\times 3+4\times 5\end{matrix}\right)
ਗੁਣਨਫਲ ਮੈਟ੍ਰਿਕਸ ਦੇ ਬਚੇ ਐਲੀਮੈਂਟ ਸਮਾਨ ਤਰੀਕੇ ਵਿੱਚ ਕੱਢੇ ਜਾਂਦੇ ਹਨ।
\left(\begin{matrix}4-3&3&6+15\\10-4&4&15+20\end{matrix}\right)
ਇਕੱਲੀ-ਇਕੱਲੀ ਸੰਖਿਆ ਨੂੰ ਗੁਣਾ ਕਰਕੇ ਹਰ ਐਲੀਮੈਂਟ ਨੂੰ ਸਰਲ ਬਣਾਓ।
\left(\begin{matrix}1&3&21\\6&4&35\end{matrix}\right)
ਮੈਟ੍ਰਿਕਸ ਦੇ ਹਰ ਐਲੀਮੈਂਟ ਦਾ ਜੋੜ ਕਰੋ।
ਸਮਾਨ ਸਮੱਸਿਆਵਾਂ
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right]
6 \times \left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right]
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] + \left[ \begin{array} { l l l } { 2 } & { 0 } \\ { -1 } & { 1 } \end{array} \right]
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] - \left[ \begin{array} { l l l } { 0 } & { 3 } \\ { 1 } & { 5 } \end{array} \right]
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \times \left[ \begin{array} { l l l } { 0 } & { 3 } \\ { 1 } & { 5 } \end{array} \right]
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] ^ 2