z ପାଇଁ ସମାଧାନ କରନ୍ତୁ
z=2
z=7
ଅଂଶୀଦାର
କ୍ଲିପ୍ ବୋର୍ଡ଼ରେ ନକଲ କରାଯାଇଛି
z^{2}+14-9z=0
ଉଭୟ ପାର୍ଶ୍ୱରୁ 9z ବିୟୋଗ କରନ୍ତୁ.
z^{2}-9z+14=0
ଏହାକୁ ଏକ ମାନାଙ୍କ ରୂପେରେ ରଖିବା ପାଇଁ ପଲିନୋମିଆଲକୁ ପୁନଃବ୍ୟବସ୍ଥିତ କରନ୍ତୁ. ବଡରୁ ସାନ ପାୱାର୍ କ୍ରମରେ ପଦଗୁଡିକୁ ରଖନ୍ତୁ.
a+b=-9 ab=14
ସମୀକରଣକୁ ସମାଧାନ କରିବାକୁ, ସୂତ୍ର z^{2}+\left(a+b\right)z+ab=\left(z+a\right)\left(z+b\right) ବ୍ୟବହାର କରି z^{2}-9z+14 ର ଫ୍ୟାକ୍ଟର୍ ବାହାର କରନ୍ତୁ. a ଏବଂ b ନିର୍ଣ୍ଣୟ କରିବାକୁ, ସମାଧାନ କରିବାକୁ ଏକ ସିଷ୍ଟମ୍ ସେଟ୍ ଅପ୍ କରନ୍ତୁ.
-1,-14 -2,-7
ଯେହେତୁ ab ଧନାତ୍ମକ ଅଟେ, a ଏବଂ b ର ସମାନ ଚିହ୍ନ ରହିଥାଏ. ଯେହେତୁa+b ଋଣାତ୍ମକ ଅଟେ, ଉଭୟ a ଏବଂ b ଋଣାତ୍ମକ ଅଟେ. ଏହିଭଳି ସମସ୍ତ ଇଣ୍ଟିଜର୍ ଯୋଡାର ତାଲିକା ପ୍ରସ୍ତୁତ କରନ୍ତୁ ଯାହା ଉତ୍ପାଦ 14 ପ୍ରଦାନ କରିଥାଏ.
-1-14=-15 -2-7=-9
ପ୍ରତି ଯୋଡା ପାଇଁ ସମଷ୍ଟି ହିସାବ କରନ୍ତୁ.
a=-7 b=-2
ସମାଧାନଟି ହେଉଛି ସେହି ଯୋଡା ଯାହା ସମଷ୍ଟି -9 ପ୍ରଦାନ କରିଥାଏ.
\left(z-7\right)\left(z-2\right)
ପ୍ରାପ୍ତ ମୂଲ୍ୟଗୁଡିକ ବ୍ୟବହାର କରି ଫ୍ୟାକ୍ଟରଯୁକ୍ତ ଅଭିବ୍ୟକ୍ତି \left(z+a\right)\left(z+b\right) ପୁନଃଲେଖନ୍ତୁ.
z=7 z=2
ସମୀକରଣ ସମାଧାନଗୁଡିକ ନିର୍ଣ୍ଣୟ କରିବାକୁ, z-7=0 ଏବଂ z-2=0 ସମାଧାନ କରନ୍ତୁ.
z^{2}+14-9z=0
ଉଭୟ ପାର୍ଶ୍ୱରୁ 9z ବିୟୋଗ କରନ୍ତୁ.
z^{2}-9z+14=0
ଏହାକୁ ଏକ ମାନାଙ୍କ ରୂପେରେ ରଖିବା ପାଇଁ ପଲିନୋମିଆଲକୁ ପୁନଃବ୍ୟବସ୍ଥିତ କରନ୍ତୁ. ବଡରୁ ସାନ ପାୱାର୍ କ୍ରମରେ ପଦଗୁଡିକୁ ରଖନ୍ତୁ.
a+b=-9 ab=1\times 14=14
ସମୀକରଣ ସମାଧାନ କରିବାକୁ, ଗୋଷ୍ଠୀଭୁକ୍ତ କରଣ କରିବା ଦ୍ୱାରା ବାମ ହାତ ପାର୍ଶ୍ୱର ଫ୍ୟାକ୍ଟର୍ ବାହାର କରନ୍ତୁ. ପ୍ରଥମେ, ବାମ ହାତ ପାର୍ଶ୍ୱ z^{2}+az+bz+14 ଭାବେ ପୁନଃ ଲେଖାଯିବା ଆବଶ୍ୟକ. a ଏବଂ b ନିର୍ଣ୍ଣୟ କରିବାକୁ, ସମାଧାନ କରିବାକୁ ଏକ ସିଷ୍ଟମ୍ ସେଟ୍ ଅପ୍ କରନ୍ତୁ.
-1,-14 -2,-7
ଯେହେତୁ ab ଧନାତ୍ମକ ଅଟେ, a ଏବଂ b ର ସମାନ ଚିହ୍ନ ରହିଥାଏ. ଯେହେତୁa+b ଋଣାତ୍ମକ ଅଟେ, ଉଭୟ a ଏବଂ b ଋଣାତ୍ମକ ଅଟେ. ଏହିଭଳି ସମସ୍ତ ଇଣ୍ଟିଜର୍ ଯୋଡାର ତାଲିକା ପ୍ରସ୍ତୁତ କରନ୍ତୁ ଯାହା ଉତ୍ପାଦ 14 ପ୍ରଦାନ କରିଥାଏ.
-1-14=-15 -2-7=-9
ପ୍ରତି ଯୋଡା ପାଇଁ ସମଷ୍ଟି ହିସାବ କରନ୍ତୁ.
a=-7 b=-2
ସମାଧାନଟି ହେଉଛି ସେହି ଯୋଡା ଯାହା ସମଷ୍ଟି -9 ପ୍ରଦାନ କରିଥାଏ.
\left(z^{2}-7z\right)+\left(-2z+14\right)
\left(z^{2}-7z\right)+\left(-2z+14\right) ଭାବରେ z^{2}-9z+14 ପୁନଃ ଲେଖନ୍ତୁ.
z\left(z-7\right)-2\left(z-7\right)
ପ୍ରଥମଟିରେ z ଏବଂ ଦ୍ୱିତୀୟ ଗୋଷ୍ଠୀରେ -2 ର ଗୁଣନିୟକ ବାହାର କରନ୍ତୁ.
\left(z-7\right)\left(z-2\right)
ଡିଷ୍ଟ୍ରିବ୍ୟୁଟିଭ୍ ପ୍ରପର୍ଟି (ବିତରଣ ବୈଶିଷ୍ଟ୍ୟ) ବ୍ୟବହାର କରି ସାଧାରଣ ପଦ z-7 ଗୁଣନିୟକ ବାହାର କରନ୍ତୁ.
z=7 z=2
ସମୀକରଣ ସମାଧାନଗୁଡିକ ନିର୍ଣ୍ଣୟ କରିବାକୁ, z-7=0 ଏବଂ z-2=0 ସମାଧାନ କରନ୍ତୁ.
z^{2}+14-9z=0
ଉଭୟ ପାର୍ଶ୍ୱରୁ 9z ବିୟୋଗ କରନ୍ତୁ.
z^{2}-9z+14=0
ଏହି ପ୍ରଣାଳୀର ax^{2}+bx+c=0 ସମସ୍ତ ସମୀକରଣଗୁଡିକ କ୍ୱାଡ୍ରାଟିକ୍ ସୂତ୍ର: \frac{-b±\sqrt{b^{2}-4ac}}{2a} ବ୍ୟବହାର କରି ସମାଧାନ କରାଯାଇପାରିବ. କ୍ୱାଡ୍ରାଟିକ୍ ସୂତ୍ର ଦୁଇଟି ସମାଧାନ ପ୍ରଦାନ କରିଥାଏ, ଗୋଟିଏ ଯେତେବେଳେ ± ଯୋଗ ହୋଇଥାଏ ଏବଂ ଅନ୍ୟଟି ଯେତେବେଳେ ଏହା ବିୟୋଗ ହୋଇଥାଏ.
z=\frac{-\left(-9\right)±\sqrt{\left(-9\right)^{2}-4\times 14}}{2}
ଏହି ସମୀକରଣ ମାନାଙ୍କ ଆକାରରେ ରହିଛି: ax^{2}+bx+c=0. \frac{-b±\sqrt{b^{2}-4ac}}{2a} କ୍ୱାଡ୍ରାଟିକ୍ ସୂତ୍ରରେ, a ପାଇଁ 1, b ପାଇଁ -9, ଏବଂ c ପାଇଁ 14 ପ୍ରତିବଦଳ କରନ୍ତୁ.
z=\frac{-\left(-9\right)±\sqrt{81-4\times 14}}{2}
ବର୍ଗ -9.
z=\frac{-\left(-9\right)±\sqrt{81-56}}{2}
-4 କୁ 14 ଥର ଗୁଣନ କରନ୍ତୁ.
z=\frac{-\left(-9\right)±\sqrt{25}}{2}
81 କୁ -56 ସହ ଯୋଡନ୍ତୁ.
z=\frac{-\left(-9\right)±5}{2}
25 ର ବର୍ଗମୂଳ ବାହାର କରନ୍ତୁ.
z=\frac{9±5}{2}
-9 ର ବିପରୀତ ହେଉଛି 9.
z=\frac{14}{2}
ବର୍ତ୍ତମାନ ସମୀକରଣ z=\frac{9±5}{2} ସମାଧାନ କରନ୍ତୁ ଯେତେବେଳେ ± ଯୁକ୍ତ ଅଟେ. 9 କୁ 5 ସହ ଯୋଡନ୍ତୁ.
z=7
14 କୁ 2 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
z=\frac{4}{2}
ବର୍ତ୍ତମାନ ସମୀକରଣ z=\frac{9±5}{2} ସମାଧାନ କରନ୍ତୁ ଯେତେବେଳେ ± ବିଯୁକ୍ତ ଅଟେ. 9 ରୁ 5 ବିୟୋଗ କରନ୍ତୁ.
z=2
4 କୁ 2 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
z=7 z=2
ବର୍ତ୍ତମାନ ସମୀକରଣ ସମାଧାନ ହୋଇଛି.
z^{2}+14-9z=0
ଉଭୟ ପାର୍ଶ୍ୱରୁ 9z ବିୟୋଗ କରନ୍ତୁ.
z^{2}-9z=-14
ଉଭୟ ପାର୍ଶ୍ୱରୁ 14 ବିୟୋଗ କରନ୍ତୁ. ଶୂନ୍ୟରୁ ଯେକୌଣସି ସଂଖ୍ୟା ବିୟୋଗ କଲେ ସେହି ସଂଖ୍ୟାର ବିଯୁକ୍ତାତ୍ମକ ରୂପ ମିଳିଥାଏ.
z^{2}-9z+\left(-\frac{9}{2}\right)^{2}=-14+\left(-\frac{9}{2}\right)^{2}
-\frac{9}{2} ପ୍ରାପ୍ତ କରିବା ପାଇଁ, x ଟର୍ମ୍ର ଗୁଣାଙ୍କ, -9 କୁ, 2 ଦ୍ୱାରା ବିଭକ୍ତ କରନ୍ତୁ. ତାପରେ ସମୀକରଣ ଉଭୟ ପାର୍ଶ୍ୱରେ -\frac{9}{2} ର ବର୍ଗ ଯୋଡନ୍ତୁ. ଏହି ପଦକ୍ଷେପ ସମୀକରଣର ବାମ ହାତ ପାର୍ଶ୍ୱକୁ ଏକ ଯଥାର୍ଥ ବର୍ଗରେ ପରିଣତ କରିଥାଏ.
z^{2}-9z+\frac{81}{4}=-14+\frac{81}{4}
ଭଗ୍ନାଂଶର ଉଭୟ ଲବ ଓ ହରର ବର୍ଗ ବାହାର କରିବା ଦ୍ୱାରା -\frac{9}{2} ବର୍ଗ ବାହାର କରନ୍ତୁ.
z^{2}-9z+\frac{81}{4}=\frac{25}{4}
-14 କୁ \frac{81}{4} ସହ ଯୋଡନ୍ତୁ.
\left(z-\frac{9}{2}\right)^{2}=\frac{25}{4}
ଗୁଣନୀୟକ z^{2}-9z+\frac{81}{4}. ସାଧାରଣତଃ, ଯେତେବେଳେ x^{2}+bx+c ଏକ ପୂର୍ଣ୍ଣ ବର୍ଗ ଅଟେ, ଏହାକୁ ସର୍ବଦା \left(x+\frac{b}{2}\right)^{2} ଭାବେ ଗୁଣନୀୟକ କରାଯାଇପାରିବ.
\sqrt{\left(z-\frac{9}{2}\right)^{2}}=\sqrt{\frac{25}{4}}
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱର ବର୍ଗମୂଳ ନିଅନ୍ତୁ.
z-\frac{9}{2}=\frac{5}{2} z-\frac{9}{2}=-\frac{5}{2}
ସରଳୀକୃତ କରିବା.
z=7 z=2
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱରେ \frac{9}{2} ଯୋଡନ୍ତୁ.
ଉଦାହରଣଗୁଡ଼ିକ
ଚତୁଷ୍ପଦୀ ସମୀକରଣ
{ x } ^ { 2 } - 4 x - 5 = 0
ତ୍ରିକୋଣମିତି
4 \sin \theta \cos \theta = 2 \sin \theta
ରୈଖିକ ସମୀକରଣ
y = 3x + 4
ବୀଜଗଣିତ
699 * 533
ମାଟ୍ରିକ୍ସ୍
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ସମକାଳୀନ ସମୀକରଣ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ବିଭେଦୀକରଣ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ଇଣ୍ଟିଗ୍ରେସନ୍
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ସୀମାଗୁଡ଼ିକ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}