ମୂଲ୍ୟାୟନ କରିବା
\left(\begin{matrix}1&3&21\\6&4&35\end{matrix}\right)
ଟ୍ରାନ୍ସପୋଜ୍ ମ୍ୟାଟ୍ରିକ୍ସ
\left(\begin{matrix}1&6\\3&4\\21&35\end{matrix}\right)
ଅଂଶୀଦାର
କ୍ଲିପ୍ ବୋର୍ଡ଼ରେ ନକଲ କରାଯାଇଛି
\left(\begin{matrix}2&3\\5&4\end{matrix}\right)\left(\begin{matrix}2&0&3\\-1&1&5\end{matrix}\right)
ମ୍ୟାଟ୍ରିକ୍ସ ଗୁଣନ ପରିଭାଷିତ ହୋଇଥାଏ ଯଦି ପ୍ରଥମ ମ୍ୟାଟ୍ରିକ୍ସର ସ୍ତମ୍ଭଗୁଡିକର ସଂଖ୍ୟା ଦ୍ୱିତୀୟ ମ୍ୟାଟ୍ରିକ୍ସର ଧାଡିଗୁଡିକର ସଂଖ୍ୟା ସହିତ ସମାନ ହୋଇଥାଏ.
\left(\begin{matrix}2\times 2+3\left(-1\right)&&\\&&\end{matrix}\right)
ଦ୍ୱିତୀୟ ମ୍ୟାଟ୍ରିସ୍କର ପ୍ରଥମ ସ୍ତମ୍ଭର ଅନୁରୂପ ଉପାଦାନ ଦ୍ୱାରା ପ୍ରଥମ ମ୍ୟାଟ୍ରିସ୍କର ପ୍ରଥମ ଧାଡିର ପ୍ରତିଟି ଉପାଦାନ ଗୁଣନ କରନ୍ତୁ ଏବଂ ପରେ ଉତ୍ପାଦ ମ୍ୟାଟ୍ରିକ୍ସର ପ୍ରଥମ ଧାଡି, ପ୍ରଥମ ସ୍ତମ୍ଭରେ ଉପାଦାନ ପ୍ରାପ୍ତ କରିବାକୁ ଏହି ଉତ୍ପାଦଗୁଡିକ ଯୋଡନ୍ତୁ.
\left(\begin{matrix}2\times 2+3\left(-1\right)&3&2\times 3+3\times 5\\5\times 2+4\left(-1\right)&4&5\times 3+4\times 5\end{matrix}\right)
ଉତ୍ପାଦ ମ୍ୟାଟ୍ରିକ୍ସର ଅବଶିଷ୍ଟ ଉପାଦାନଗୁଡିକ ସେହି ଉପାୟରେ ନିର୍ଣ୍ଣୟ କରାଯାଇଥାଏ.
\left(\begin{matrix}4-3&3&6+15\\10-4&4&15+20\end{matrix}\right)
ପୃଥକ୍ ଟର୍ମ୍ଗୁଡିକ ଗୁଣନ କରିବା ଦ୍ୱାରା ପ୍ରତ୍ୟେକ ଉପଦାନାକୁ ସରଳୀକୃତ କରନ୍ତୁ.
\left(\begin{matrix}1&3&21\\6&4&35\end{matrix}\right)
ମ୍ୟାଟ୍ରିକ୍ସର ପ୍ରତିଟି ଉପାଦାନର ସମଷ୍ଟି ନିର୍ଣ୍ଣୟ କରନ୍ତୁ.
ଉଦାହରଣଗୁଡ଼ିକ
ଚତୁଷ୍ପଦୀ ସମୀକରଣ
{ x } ^ { 2 } - 4 x - 5 = 0
ତ୍ରିକୋଣମିତି
4 \sin \theta \cos \theta = 2 \sin \theta
ରୈଖିକ ସମୀକରଣ
y = 3x + 4
ବୀଜଗଣିତ
699 * 533
ମାଟ୍ରିକ୍ସ୍
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ସମକାଳୀନ ସମୀକରଣ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ବିଭେଦୀକରଣ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ଇଣ୍ଟିଗ୍ରେସନ୍
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ସୀମାଗୁଡ଼ିକ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}