y ପାଇଁ ସମାଧାନ କରନ୍ତୁ (ଜଟଳି ସମାଧାନ)
\left\{\begin{matrix}y=-1\text{, }&x\neq 1\\y\in \mathrm{C}\text{, }&x=1\end{matrix}\right.
y ପାଇଁ ସମାଧାନ କରନ୍ତୁ
\left\{\begin{matrix}y=-1\text{, }&x\neq 1\text{ and }x\geq 0\\y\in \mathrm{R}\text{, }&x=1\end{matrix}\right.
x ପାଇଁ ସମାଧାନ କରନ୍ତୁ (ଜଟଳି ସମାଧାନ)
\left\{\begin{matrix}\\x=1\text{, }&\text{unconditionally}\\x\in \mathrm{C}\text{, }&y=-1\end{matrix}\right.
x ପାଇଁ ସମାଧାନ କରନ୍ତୁ
\left\{\begin{matrix}\\x=1\text{, }&\text{unconditionally}\\x\geq 0\text{, }&y=-1\end{matrix}\right.
ଗ୍ରାଫ୍
ଅଂଶୀଦାର
କ୍ଲିପ୍ ବୋର୍ଡ଼ରେ ନକଲ କରାଯାଇଛି
y\sqrt{x}-1-y=-\sqrt{x}
ଉଭୟ ପାର୍ଶ୍ୱରୁ y ବିୟୋଗ କରନ୍ତୁ.
y\sqrt{x}-y=-\sqrt{x}+1
ଉଭୟ ପାର୍ଶ୍ଵକୁ 1 ଯୋଡନ୍ତୁ.
\left(\sqrt{x}-1\right)y=-\sqrt{x}+1
y ଧାରଣ କରିଥିବା ସମସ୍ତ ପଦ ସମ୍ମେଳନ କରନ୍ତୁ.
\frac{\left(\sqrt{x}-1\right)y}{\sqrt{x}-1}=\frac{-\sqrt{x}+1}{\sqrt{x}-1}
ଉଭୟ ପାର୍ଶ୍ୱକୁ \sqrt{x}-1 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
y=\frac{-\sqrt{x}+1}{\sqrt{x}-1}
\sqrt{x}-1 ଦ୍ୱାରା ବିଭାଜନ କରିବା \sqrt{x}-1 ଦ୍ୱାରା ଗୁଣନକୁ ପୂର୍ବବତ୍ କରିଥାଏ.
y=-1
-\sqrt{x}+1 କୁ \sqrt{x}-1 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
y\sqrt{x}-1-y=-\sqrt{x}
ଉଭୟ ପାର୍ଶ୍ୱରୁ y ବିୟୋଗ କରନ୍ତୁ.
y\sqrt{x}-y=-\sqrt{x}+1
ଉଭୟ ପାର୍ଶ୍ଵକୁ 1 ଯୋଡନ୍ତୁ.
\left(\sqrt{x}-1\right)y=-\sqrt{x}+1
y ଧାରଣ କରିଥିବା ସମସ୍ତ ପଦ ସମ୍ମେଳନ କରନ୍ତୁ.
\frac{\left(\sqrt{x}-1\right)y}{\sqrt{x}-1}=\frac{-\sqrt{x}+1}{\sqrt{x}-1}
ଉଭୟ ପାର୍ଶ୍ୱକୁ \sqrt{x}-1 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
y=\frac{-\sqrt{x}+1}{\sqrt{x}-1}
\sqrt{x}-1 ଦ୍ୱାରା ବିଭାଜନ କରିବା \sqrt{x}-1 ଦ୍ୱାରା ଗୁଣନକୁ ପୂର୍ବବତ୍ କରିଥାଏ.
y=-1
-\sqrt{x}+1 କୁ \sqrt{x}-1 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
ଉଦାହରଣଗୁଡ଼ିକ
ଚତୁଷ୍ପଦୀ ସମୀକରଣ
{ x } ^ { 2 } - 4 x - 5 = 0
ତ୍ରିକୋଣମିତି
4 \sin \theta \cos \theta = 2 \sin \theta
ରୈଖିକ ସମୀକରଣ
y = 3x + 4
ବୀଜଗଣିତ
699 * 533
ମାଟ୍ରିକ୍ସ୍
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ସମକାଳୀନ ସମୀକରଣ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ବିଭେଦୀକରଣ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ଇଣ୍ଟିଗ୍ରେସନ୍
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ସୀମାଗୁଡ଼ିକ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}