ମୁଖ୍ୟ ବିଷୟବସ୍ତୁକୁ ଛାଡି ଦିଅନ୍ତୁ
y ପାଇଁ ସମାଧାନ କରନ୍ତୁ
Tick mark Image
ଗ୍ରାଫ୍

ୱେବ୍ ସନ୍ଧାନରୁ ସମାନ ପ୍ରକାରର ସମସ୍ୟା

ଅଂଶୀଦାର

y^{2}+9y+8=0
ଉଭୟ ପାର୍ଶ୍ଵକୁ 8 ଯୋଡନ୍ତୁ.
a+b=9 ab=8
ସମୀକରଣକୁ ସମାଧାନ କରିବାକୁ, ସୂତ୍ର y^{2}+\left(a+b\right)y+ab=\left(y+a\right)\left(y+b\right) ବ୍ୟବହାର କରି y^{2}+9y+8 ର ଫ୍ୟାକ୍ଟର୍‌ ବାହାର କରନ୍ତୁ. a ଏବଂ b ନିର୍ଣ୍ଣୟ କରିବାକୁ, ସମାଧାନ କରିବାକୁ ଏକ ସିଷ୍ଟମ୍‌ ସେଟ୍‌ ଅପ୍‌ କରନ୍ତୁ.
1,8 2,4
ଯେହେତୁ ab ଧନାତ୍ମକ ଅଟେ, a ଏବଂ b ର ସମାନ ଚିହ୍ନ ରହିଥାଏ. ଯେହେତୁa+b ଧନାତ୍ମକ ଅଟେ, ଉଭୟ a ଏବଂ b ଧନାତ୍ମକ ଅଟେ. ଏହିଭଳି ସମସ୍ତ ଇଣ୍ଟିଜର୍ ଯୋଡାର ତାଲିକା ପ୍ରସ୍ତୁତ କରନ୍ତୁ ଯାହା ଉତ୍ପାଦ 8 ପ୍ରଦାନ କରିଥାଏ.
1+8=9 2+4=6
ପ୍ରତି ଯୋଡା ପାଇଁ ସମଷ୍ଟି ହିସାବ କରନ୍ତୁ.
a=1 b=8
ସମାଧାନଟି ହେଉଛି ସେହି ଯୋଡା ଯାହା ସମଷ୍ଟି 9 ପ୍ରଦାନ କରିଥାଏ.
\left(y+1\right)\left(y+8\right)
ପ୍ରାପ୍ତ ମୂଲ୍ୟଗୁଡିକ ବ୍ୟବହାର କରି ଫ୍ୟାକ୍ଟରଯୁକ୍ତ ଅଭିବ୍ୟକ୍ତି \left(y+a\right)\left(y+b\right) ପୁନଃଲେଖନ୍ତୁ.
y=-1 y=-8
ସମୀକରଣ ସମାଧାନଗୁଡିକ ନିର୍ଣ୍ଣୟ କରିବାକୁ, y+1=0 ଏବଂ y+8=0 ସମାଧାନ କରନ୍ତୁ.
y^{2}+9y+8=0
ଉଭୟ ପାର୍ଶ୍ଵକୁ 8 ଯୋଡନ୍ତୁ.
a+b=9 ab=1\times 8=8
ସମୀକରଣ ସମାଧାନ କରିବାକୁ, ଗୋଷ୍ଠୀଭୁକ୍ତ କରଣ କରିବା ଦ୍ୱାରା ବାମ ହାତ ପାର୍ଶ୍ୱର ଫ୍ୟାକ୍ଟର୍‌ ବାହାର କରନ୍ତୁ. ପ୍ରଥମେ, ବାମ ହାତ ପାର୍ଶ୍ୱ y^{2}+ay+by+8 ଭାବେ ପୁନଃ ଲେଖାଯିବା ଆବଶ୍ୟକ. a ଏବଂ b ନିର୍ଣ୍ଣୟ କରିବାକୁ, ସମାଧାନ କରିବାକୁ ଏକ ସିଷ୍ଟମ୍‌ ସେଟ୍‌ ଅପ୍‌ କରନ୍ତୁ.
1,8 2,4
ଯେହେତୁ ab ଧନାତ୍ମକ ଅଟେ, a ଏବଂ b ର ସମାନ ଚିହ୍ନ ରହିଥାଏ. ଯେହେତୁa+b ଧନାତ୍ମକ ଅଟେ, ଉଭୟ a ଏବଂ b ଧନାତ୍ମକ ଅଟେ. ଏହିଭଳି ସମସ୍ତ ଇଣ୍ଟିଜର୍ ଯୋଡାର ତାଲିକା ପ୍ରସ୍ତୁତ କରନ୍ତୁ ଯାହା ଉତ୍ପାଦ 8 ପ୍ରଦାନ କରିଥାଏ.
1+8=9 2+4=6
ପ୍ରତି ଯୋଡା ପାଇଁ ସମଷ୍ଟି ହିସାବ କରନ୍ତୁ.
a=1 b=8
ସମାଧାନଟି ହେଉଛି ସେହି ଯୋଡା ଯାହା ସମଷ୍ଟି 9 ପ୍ରଦାନ କରିଥାଏ.
\left(y^{2}+y\right)+\left(8y+8\right)
\left(y^{2}+y\right)+\left(8y+8\right) ଭାବରେ y^{2}+9y+8 ପୁନଃ ଲେଖନ୍ତୁ.
y\left(y+1\right)+8\left(y+1\right)
ପ୍ରଥମଟିରେ y ଏବଂ ଦ୍ୱିତୀୟ ଗୋଷ୍ଠୀରେ 8 ର ଗୁଣନିୟକ ବାହାର କରନ୍ତୁ.
\left(y+1\right)\left(y+8\right)
ଡିଷ୍ଟ୍ରିବ୍ୟୁଟିଭ୍ ପ୍ରପର୍ଟି (ବିତରଣ ବୈଶିଷ୍ଟ୍ୟ) ବ୍ୟବହାର କରି ସାଧାରଣ ପଦ y+1 ଗୁଣନିୟକ ବାହାର କରନ୍ତୁ.
y=-1 y=-8
ସମୀକରଣ ସମାଧାନଗୁଡିକ ନିର୍ଣ୍ଣୟ କରିବାକୁ, y+1=0 ଏବଂ y+8=0 ସମାଧାନ କରନ୍ତୁ.
y^{2}+9y=-8
ଏହି ପ୍ରଣାଳୀର ax^{2}+bx+c=0 ସମସ୍ତ ସମୀକରଣଗୁଡିକ କ୍ୱାଡ୍ରାଟିକ୍‌ ସୂତ୍ର: \frac{-b±\sqrt{b^{2}-4ac}}{2a} ବ୍ୟବହାର କରି ସମାଧାନ କରାଯାଇପାରିବ. କ୍ୱାଡ୍ରାଟିକ୍‌ ସୂତ୍ର ଦୁଇଟି ସମାଧାନ ପ୍ରଦାନ କରିଥାଏ, ଗୋଟିଏ ଯେତେବେଳେ ± ଯୋଗ ହୋଇଥାଏ ଏବଂ ଅନ୍ୟଟି ଯେତେବେଳେ ଏହା ବିୟୋଗ ହୋଇଥାଏ.
y^{2}+9y-\left(-8\right)=-8-\left(-8\right)
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱରେ 8 ଯୋଡନ୍ତୁ.
y^{2}+9y-\left(-8\right)=0
ସଂପୃକ୍ତ ସଂଖ୍ୟାରୁ ସେହି -8 ବିୟୋଗ କରିବାରେ 0 ମିଳିଥାଏ.
y^{2}+9y+8=0
0 ରୁ -8 ବିୟୋଗ କରନ୍ତୁ.
y=\frac{-9±\sqrt{9^{2}-4\times 8}}{2}
ଏହି ସମୀକରଣ ମାନାଙ୍କ ଆକାରରେ ରହିଛି: ax^{2}+bx+c=0. \frac{-b±\sqrt{b^{2}-4ac}}{2a} କ୍ୱାଡ୍ରାଟିକ୍‌ ସୂତ୍ରରେ, a ପାଇଁ 1, b ପାଇଁ 9, ଏବଂ c ପାଇଁ 8 ପ୍ରତିବଦଳ କରନ୍ତୁ.
y=\frac{-9±\sqrt{81-4\times 8}}{2}
ବର୍ଗ 9.
y=\frac{-9±\sqrt{81-32}}{2}
-4 କୁ 8 ଥର ଗୁଣନ କରନ୍ତୁ.
y=\frac{-9±\sqrt{49}}{2}
81 କୁ -32 ସହ ଯୋଡନ୍ତୁ.
y=\frac{-9±7}{2}
49 ର ବର୍ଗମୂଳ ବାହାର କରନ୍ତୁ.
y=-\frac{2}{2}
ବର୍ତ୍ତମାନ ସମୀକରଣ y=\frac{-9±7}{2} ସମାଧାନ କରନ୍ତୁ ଯେତେବେଳେ ± ଯୁକ୍ତ ଅଟେ. -9 କୁ 7 ସହ ଯୋଡନ୍ତୁ.
y=-1
-2 କୁ 2 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
y=-\frac{16}{2}
ବର୍ତ୍ତମାନ ସମୀକରଣ y=\frac{-9±7}{2} ସମାଧାନ କରନ୍ତୁ ଯେତେବେଳେ ± ବିଯୁକ୍ତ ଅଟେ. -9 ରୁ 7 ବିୟୋଗ କରନ୍ତୁ.
y=-8
-16 କୁ 2 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
y=-1 y=-8
ବର୍ତ୍ତମାନ ସମୀକରଣ ସମାଧାନ ହୋଇଛି.
y^{2}+9y=-8
କ୍ୱାଡ୍ରାଟିକ୍‌ ସମୀକରଣଗୁଡିକ ଯେପରିକି ଏହି ଗୋଟିଏ ବର୍ଗ ବାହାର କରିବା ସମ୍ପୂର୍ଣ୍ଣ କରିବା ଦ୍ୱାରା ସମାଧାନ କରାଯାଇପାରିବ. ବର୍ଗ ବାହାର କରିବା ସମ୍ପୂର୍ଣ୍ଣ କରିବା ପାଇଁ, ସମୀକରଣ ପ୍ରଥମେ x^{2}+bx=c ପ୍ରକାରେ ହେବା ଆବଶ୍ୟକ.
y^{2}+9y+\left(\frac{9}{2}\right)^{2}=-8+\left(\frac{9}{2}\right)^{2}
\frac{9}{2} ପ୍ରାପ୍ତ କରିବା ପାଇଁ, x ଟର୍ମ୍‌‌ର ଗୁଣାଙ୍କ, 9 କୁ, 2 ଦ୍ୱାରା ବିଭକ୍ତ କରନ୍ତୁ. ତାପରେ ସମୀକରଣ ଉଭୟ ପାର୍ଶ୍ୱରେ \frac{9}{2} ର ବର୍ଗ ଯୋଡନ୍ତୁ. ଏହି ପଦକ୍ଷେପ ସମୀକରଣର ବାମ ହାତ ପାର୍ଶ୍ୱକୁ ଏକ ଯଥାର୍ଥ ବର୍ଗରେ ପରିଣତ କରିଥାଏ.
y^{2}+9y+\frac{81}{4}=-8+\frac{81}{4}
ଭଗ୍ନାଂଶର ଉଭୟ ଲବ ଓ ହରର ବର୍ଗ ବାହାର କରିବା ଦ୍ୱାରା \frac{9}{2} ବର୍ଗ ବାହାର କରନ୍ତୁ.
y^{2}+9y+\frac{81}{4}=\frac{49}{4}
-8 କୁ \frac{81}{4} ସହ ଯୋଡନ୍ତୁ.
\left(y+\frac{9}{2}\right)^{2}=\frac{49}{4}
ଗୁଣନୀୟକ y^{2}+9y+\frac{81}{4}. ସାଧାରଣତଃ, ଯେତେବେଳେ x^{2}+bx+c ଏକ ପୂର୍ଣ୍ଣ ବର୍ଗ ଅଟେ, ଏହାକୁ ସର୍ବଦା \left(x+\frac{b}{2}\right)^{2} ଭାବେ ଗୁଣନୀୟକ କରାଯାଇପାରିବ.
\sqrt{\left(y+\frac{9}{2}\right)^{2}}=\sqrt{\frac{49}{4}}
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱର ବର୍ଗମୂଳ ନିଅନ୍ତୁ.
y+\frac{9}{2}=\frac{7}{2} y+\frac{9}{2}=-\frac{7}{2}
ସରଳୀକୃତ କରିବା.
y=-1 y=-8
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱରୁ \frac{9}{2} ବିୟୋଗ କରନ୍ତୁ.