m ପାଇଁ ସମାଧାନ କରନ୍ତୁ (ଜଟଳି ସମାଧାନ)
\left\{\begin{matrix}m=\frac{y+b}{x}\text{, }&x\neq 0\\m\in \mathrm{C}\text{, }&y=-b\text{ and }x=0\end{matrix}\right.
b ପାଇଁ ସମାଧାନ କରନ୍ତୁ
b=mx-y
m ପାଇଁ ସମାଧାନ କରନ୍ତୁ
\left\{\begin{matrix}m=\frac{y+b}{x}\text{, }&x\neq 0\\m\in \mathrm{R}\text{, }&y=-b\text{ and }x=0\end{matrix}\right.
ଗ୍ରାଫ୍
ଅଂଶୀଦାର
କ୍ଲିପ୍ ବୋର୍ଡ଼ରେ ନକଲ କରାଯାଇଛି
mx-b=y
ପାର୍ଶ୍ୱଗୁଡିକ ସ୍ୱାପ୍ କରନ୍ତୁ ଯାହା ଫଳରେ ସମସ୍ତ ଭାରିଏବୁଲ୍ ପଦଗୁଡିକ ବାମ ହାତ ପାର୍ଶ୍ୱରେ ରହିଥାନ୍ତି.
mx=y+b
ଉଭୟ ପାର୍ଶ୍ଵକୁ b ଯୋଡନ୍ତୁ.
xm=y+b
ସମୀକରଣ ମାନାଙ୍କ ରୂପରେ ରହିଛି.
\frac{xm}{x}=\frac{y+b}{x}
ଉଭୟ ପାର୍ଶ୍ୱକୁ x ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
m=\frac{y+b}{x}
x ଦ୍ୱାରା ବିଭାଜନ କରିବା x ଦ୍ୱାରା ଗୁଣନକୁ ପୂର୍ବବତ୍ କରିଥାଏ.
mx-b=y
ପାର୍ଶ୍ୱଗୁଡିକ ସ୍ୱାପ୍ କରନ୍ତୁ ଯାହା ଫଳରେ ସମସ୍ତ ଭାରିଏବୁଲ୍ ପଦଗୁଡିକ ବାମ ହାତ ପାର୍ଶ୍ୱରେ ରହିଥାନ୍ତି.
-b=y-mx
ଉଭୟ ପାର୍ଶ୍ୱରୁ mx ବିୟୋଗ କରନ୍ତୁ.
\frac{-b}{-1}=\frac{y-mx}{-1}
ଉଭୟ ପାର୍ଶ୍ୱକୁ -1 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
b=\frac{y-mx}{-1}
-1 ଦ୍ୱାରା ବିଭାଜନ କରିବା -1 ଦ୍ୱାରା ଗୁଣନକୁ ପୂର୍ବବତ୍ କରିଥାଏ.
b=mx-y
y-mx କୁ -1 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
mx-b=y
ପାର୍ଶ୍ୱଗୁଡିକ ସ୍ୱାପ୍ କରନ୍ତୁ ଯାହା ଫଳରେ ସମସ୍ତ ଭାରିଏବୁଲ୍ ପଦଗୁଡିକ ବାମ ହାତ ପାର୍ଶ୍ୱରେ ରହିଥାନ୍ତି.
mx=y+b
ଉଭୟ ପାର୍ଶ୍ଵକୁ b ଯୋଡନ୍ତୁ.
xm=y+b
ସମୀକରଣ ମାନାଙ୍କ ରୂପରେ ରହିଛି.
\frac{xm}{x}=\frac{y+b}{x}
ଉଭୟ ପାର୍ଶ୍ୱକୁ x ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
m=\frac{y+b}{x}
x ଦ୍ୱାରା ବିଭାଜନ କରିବା x ଦ୍ୱାରା ଗୁଣନକୁ ପୂର୍ବବତ୍ କରିଥାଏ.
ଉଦାହରଣଗୁଡ଼ିକ
ଚତୁଷ୍ପଦୀ ସମୀକରଣ
{ x } ^ { 2 } - 4 x - 5 = 0
ତ୍ରିକୋଣମିତି
4 \sin \theta \cos \theta = 2 \sin \theta
ରୈଖିକ ସମୀକରଣ
y = 3x + 4
ବୀଜଗଣିତ
699 * 533
ମାଟ୍ରିକ୍ସ୍
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ସମକାଳୀନ ସମୀକରଣ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ବିଭେଦୀକରଣ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ଇଣ୍ଟିଗ୍ରେସନ୍
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ସୀମାଗୁଡ଼ିକ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}