E ପାଇଁ ସମାଧାନ କରନ୍ତୁ (ଜଟଳି ସମାଧାନ)
\left\{\begin{matrix}E=-\frac{yc^{\frac{t}{4}}}{1-c^{\frac{t}{4}}}\text{, }&\nexists n_{1}\in \mathrm{Z}\text{ : }c=e^{-\frac{\pi n_{1}iRe(t)}{2\times \frac{\left(Re(t)\right)^{2}+\left(Im(t)\right)^{2}}{16}}-\frac{\pi n_{1}Im(t)}{2\times \frac{\left(Re(t)\right)^{2}+\left(Im(t)\right)^{2}}{16}}}\\E\in \mathrm{C}\text{, }&\left(c=0\text{ and }t\neq 0\right)\text{ or }\left(y=0\text{ and }\exists n_{1}\in \mathrm{Z}\text{ : }c=e^{-\frac{\pi n_{1}iRe(t)}{2\times \frac{\left(Re(t)\right)^{2}+\left(Im(t)\right)^{2}}{16}}-\frac{\pi n_{1}Im(t)}{2\times \frac{\left(Re(t)\right)^{2}+\left(Im(t)\right)^{2}}{16}}}\right)\end{matrix}\right.
E ପାଇଁ ସମାଧାନ କରନ୍ତୁ
\left\{\begin{matrix}E=-\frac{yc^{\frac{t}{4}}}{1-c^{\frac{t}{4}}}\text{, }&\left(t\neq 0\text{ and }c\neq -1\text{ and }Denominator(\frac{t}{4})\text{bmod}2=1\text{ and }c<0\text{ and }Denominator(-\frac{t}{4})\text{bmod}2=1\right)\text{ or }\left(c<0\text{ and }Numerator(\frac{t}{4})\text{bmod}2=1\text{ and }Denominator(\frac{t}{4})\text{bmod}2=1\text{ and }Denominator(-\frac{t}{4})\text{bmod}2=1\right)\text{ or }\left(t\neq 0\text{ and }c\neq 1\text{ and }c>0\right)\\E\in \mathrm{R}\text{, }&\left(y=0\text{ and }t=0\text{ and }c\neq 0\right)\text{ or }\left(Numerator(\frac{t}{4})\text{bmod}2=0\text{ and }y=0\text{ and }Denominator(\frac{t}{4})\text{bmod}2=1\text{ and }Denominator(-\frac{t}{4})\text{bmod}2=1\text{ and }c=-1\right)\text{ or }\left(c=1\text{ and }y=0\right)\text{ or }\left(c=0\text{ and }t<0\right)\end{matrix}\right.
ଗ୍ରାଫ୍
ଅଂଶୀଦାର
କ୍ଲିପ୍ ବୋର୍ଡ଼ରେ ନକଲ କରାଯାଇଛି
y=E-Ec^{\frac{-t}{4}}
E କୁ 1-c^{\frac{-t}{4}} ଦ୍ୱାରା ଗୁଣନ କରିବା ପାଇଁ ବିତରଣାତ୍ମକ ଗୁଣଧର୍ମ ବ୍ୟବହାର କରନ୍ତୁ.
E-Ec^{\frac{-t}{4}}=y
ପାର୍ଶ୍ୱଗୁଡିକ ସ୍ୱାପ୍ କରନ୍ତୁ ଯାହା ଫଳରେ ସମସ୍ତ ଭାରିଏବୁଲ୍ ପଦଗୁଡିକ ବାମ ହାତ ପାର୍ଶ୍ୱରେ ରହିଥାନ୍ତି.
-Ec^{-\frac{t}{4}}+E=y
ପଦଗୁଡିକୁ ପୁନଃକ୍ରମରେ ରଖନ୍ତୁ.
\left(-c^{-\frac{t}{4}}+1\right)E=y
E ଧାରଣ କରିଥିବା ସମସ୍ତ ପଦ ସମ୍ମେଳନ କରନ୍ତୁ.
\left(1-c^{-\frac{t}{4}}\right)E=y
ସମୀକରଣ ମାନାଙ୍କ ରୂପରେ ରହିଛି.
\frac{\left(1-c^{-\frac{t}{4}}\right)E}{1-c^{-\frac{t}{4}}}=\frac{y}{1-c^{-\frac{t}{4}}}
ଉଭୟ ପାର୍ଶ୍ୱକୁ -c^{-\frac{1}{4}t}+1 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
E=\frac{y}{1-c^{-\frac{t}{4}}}
-c^{-\frac{1}{4}t}+1 ଦ୍ୱାରା ବିଭାଜନ କରିବା -c^{-\frac{1}{4}t}+1 ଦ୍ୱାରା ଗୁଣନକୁ ପୂର୍ବବତ୍ କରିଥାଏ.
E=\frac{yc^{\frac{t}{4}}}{c^{\frac{t}{4}}-1}
y କୁ -c^{-\frac{1}{4}t}+1 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
y=E-Ec^{\frac{-t}{4}}
E କୁ 1-c^{\frac{-t}{4}} ଦ୍ୱାରା ଗୁଣନ କରିବା ପାଇଁ ବିତରଣାତ୍ମକ ଗୁଣଧର୍ମ ବ୍ୟବହାର କରନ୍ତୁ.
E-Ec^{\frac{-t}{4}}=y
ପାର୍ଶ୍ୱଗୁଡିକ ସ୍ୱାପ୍ କରନ୍ତୁ ଯାହା ଫଳରେ ସମସ୍ତ ଭାରିଏବୁଲ୍ ପଦଗୁଡିକ ବାମ ହାତ ପାର୍ଶ୍ୱରେ ରହିଥାନ୍ତି.
-Ec^{-\frac{t}{4}}+E=y
ପଦଗୁଡିକୁ ପୁନଃକ୍ରମରେ ରଖନ୍ତୁ.
\left(-c^{-\frac{t}{4}}+1\right)E=y
E ଧାରଣ କରିଥିବା ସମସ୍ତ ପଦ ସମ୍ମେଳନ କରନ୍ତୁ.
\left(1-c^{-\frac{t}{4}}\right)E=y
ସମୀକରଣ ମାନାଙ୍କ ରୂପରେ ରହିଛି.
\frac{\left(1-c^{-\frac{t}{4}}\right)E}{1-c^{-\frac{t}{4}}}=\frac{y}{1-c^{-\frac{t}{4}}}
ଉଭୟ ପାର୍ଶ୍ୱକୁ -c^{-\frac{1}{4}t}+1 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
E=\frac{y}{1-c^{-\frac{t}{4}}}
-c^{-\frac{1}{4}t}+1 ଦ୍ୱାରା ବିଭାଜନ କରିବା -c^{-\frac{1}{4}t}+1 ଦ୍ୱାରା ଗୁଣନକୁ ପୂର୍ବବତ୍ କରିଥାଏ.
E=\frac{yc^{\frac{t}{4}}}{c^{\frac{t}{4}}-1}
y କୁ -c^{-\frac{1}{4}t}+1 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
ଉଦାହରଣଗୁଡ଼ିକ
ଚତୁଷ୍ପଦୀ ସମୀକରଣ
{ x } ^ { 2 } - 4 x - 5 = 0
ତ୍ରିକୋଣମିତି
4 \sin \theta \cos \theta = 2 \sin \theta
ରୈଖିକ ସମୀକରଣ
y = 3x + 4
ବୀଜଗଣିତ
699 * 533
ମାଟ୍ରିକ୍ସ୍
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ସମକାଳୀନ ସମୀକରଣ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ବିଭେଦୀକରଣ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ଇଣ୍ଟିଗ୍ରେସନ୍
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ସୀମାଗୁଡ଼ିକ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}