x ପାଇଁ ସମାଧାନ କରନ୍ତୁ (ଜଟଳି ସମାଧାନ)
x=\left(-i\right)\ln(\left(-i\right)\left(-1+e^{y}+\left(-2\right)\left(\left(-1\right)e^{y}\right)^{\frac{1}{2}}\right)\left(1+e^{y}\right)^{-1})+2\pi n_{40}\text{, }n_{40}\in \mathrm{Z}
x=\left(-i\right)\ln(\left(-i\right)\left(-1+e^{y}+2\left(\left(-1\right)e^{y}\right)^{\frac{1}{2}}\right)\left(1+e^{y}\right)^{-1})+2\pi n_{37}\text{, }n_{37}\in \mathrm{Z}
y ପାଇଁ ସମାଧାନ କରନ୍ତୁ (ଜଟଳି ସମାଧାନ)
y=\ln(\frac{-\sin(x)+1}{\sin(x)+1})
\nexists n_{1}\in \mathrm{Z}\text{ : }x=\pi n_{1}+\frac{\pi }{2}
x ପାଇଁ ସମାଧାନ କରନ୍ତୁ
x=\left(-1\right)arcSin(\left(-1+e^{y}\right)\left(1+e^{y}\right)^{-1})+2\pi n_{28}\text{, }n_{28}\in \mathrm{Z}\text{, }\exists n_{9}\in \mathrm{Z}\text{ : }\left(n_{9}<\left(\left(-1\right)arcSin(\left(-1+e^{y}\right)\left(1+e^{y}\right)^{-1})+2\pi n_{28}+\left(-\frac{1}{2}\right)\pi \right)\pi ^{-1}\text{ and }\left(-1\right)arcSin(\left(-1+e^{y}\right)\left(1+e^{y}\right)^{-1})+2\pi n_{28}<\pi \left(n_{9}+\frac{3}{2}\right)\right)\text{ and }\exists n_{9}\in \mathrm{Z}\text{ : }\left(\left(-1\right)arcSin(\left(-1+e^{y}\right)\left(1+e^{y}\right)^{-1})+2\pi n_{28}>\pi n_{9}+\frac{1}{2}\pi \text{ and }\left(-1\right)arcSin(\left(-1+e^{y}\right)\left(1+e^{y}\right)^{-1})+2\pi n_{28}<\pi \left(n_{9}+\frac{3}{2}\right)\right)
x=\pi +2\pi n_{23}+arcSin(\left(-1+e^{y}\right)\left(1+e^{y}\right)^{-1})\text{, }n_{23}\in \mathrm{Z}\text{, }\exists n_{9}\in \mathrm{Z}\text{ : }\left(\pi +2\pi n_{23}+arcSin(\left(-1+e^{y}\right)\left(1+e^{y}\right)^{-1})>\pi n_{9}+\frac{1}{2}\pi \text{ and }\pi +2\pi n_{23}+arcSin(\left(-1+e^{y}\right)\left(1+e^{y}\right)^{-1})<\left(n_{9}+\frac{3}{2}\right)\pi \right)\text{ and }\exists n_{9}\in \mathrm{Z}\text{ : }\left(\pi +2\pi n_{23}+arcSin(\left(-1+e^{y}\right)\left(1+e^{y}\right)^{-1})>\pi n_{9}+\frac{1}{2}\pi \text{ and }\pi +2\pi n_{23}+arcSin(\left(-1+e^{y}\right)\left(1+e^{y}\right)^{-1})<\pi \left(n_{9}+\frac{3}{2}\right)\right)
y ପାଇଁ ସମାଧାନ କରନ୍ତୁ
y=\ln(\frac{-\sin(x)+1}{\sin(x)+1})
\exists n_{1}\in \mathrm{Z}\text{ : }\left(x>\pi n_{1}+\frac{\pi }{2}\text{ and }x<\pi n_{1}+\frac{3\pi }{2}\right)
ଗ୍ରାଫ୍
ଅଂଶୀଦାର
କ୍ଲିପ୍ ବୋର୍ଡ଼ରେ ନକଲ କରାଯାଇଛି
ଉଦାହରଣଗୁଡ଼ିକ
ଚତୁଷ୍ପଦୀ ସମୀକରଣ
{ x } ^ { 2 } - 4 x - 5 = 0
ତ୍ରିକୋଣମିତି
4 \sin \theta \cos \theta = 2 \sin \theta
ରୈଖିକ ସମୀକରଣ
y = 3x + 4
ବୀଜଗଣିତ
699 * 533
ମାଟ୍ରିକ୍ସ୍
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ସମକାଳୀନ ସମୀକରଣ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ବିଭେଦୀକରଣ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ଇଣ୍ଟିଗ୍ରେସନ୍
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ସୀମାଗୁଡ଼ିକ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}