ମୁଖ୍ୟ ବିଷୟବସ୍ତୁକୁ ଛାଡି ଦିଅନ୍ତୁ
x_0 ପାଇଁ ସମାଧାନ କରନ୍ତୁ
Tick mark Image

ୱେବ୍ ସନ୍ଧାନରୁ ସମାନ ପ୍ରକାରର ସମସ୍ୟା

ଅଂଶୀଦାର

x_{0}^{2}-2x_{0}=-3
ଏହି ପ୍ରଣାଳୀର ax^{2}+bx+c=0 ସମସ୍ତ ସମୀକରଣଗୁଡିକ କ୍ୱାଡ୍ରାଟିକ୍‌ ସୂତ୍ର: \frac{-b±\sqrt{b^{2}-4ac}}{2a} ବ୍ୟବହାର କରି ସମାଧାନ କରାଯାଇପାରିବ. କ୍ୱାଡ୍ରାଟିକ୍‌ ସୂତ୍ର ଦୁଇଟି ସମାଧାନ ପ୍ରଦାନ କରିଥାଏ, ଗୋଟିଏ ଯେତେବେଳେ ± ଯୋଗ ହୋଇଥାଏ ଏବଂ ଅନ୍ୟଟି ଯେତେବେଳେ ଏହା ବିୟୋଗ ହୋଇଥାଏ.
x_{0}^{2}-2x_{0}-\left(-3\right)=-3-\left(-3\right)
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱରେ 3 ଯୋଡନ୍ତୁ.
x_{0}^{2}-2x_{0}-\left(-3\right)=0
ସଂପୃକ୍ତ ସଂଖ୍ୟାରୁ ସେହି -3 ବିୟୋଗ କରିବାରେ 0 ମିଳିଥାଏ.
x_{0}^{2}-2x_{0}+3=0
0 ରୁ -3 ବିୟୋଗ କରନ୍ତୁ.
x_{0}=\frac{-\left(-2\right)±\sqrt{\left(-2\right)^{2}-4\times 3}}{2}
ଏହି ସମୀକରଣ ମାନାଙ୍କ ଆକାରରେ ରହିଛି: ax^{2}+bx+c=0. \frac{-b±\sqrt{b^{2}-4ac}}{2a} କ୍ୱାଡ୍ରାଟିକ୍‌ ସୂତ୍ରରେ, a ପାଇଁ 1, b ପାଇଁ -2, ଏବଂ c ପାଇଁ 3 ପ୍ରତିବଦଳ କରନ୍ତୁ.
x_{0}=\frac{-\left(-2\right)±\sqrt{4-4\times 3}}{2}
ବର୍ଗ -2.
x_{0}=\frac{-\left(-2\right)±\sqrt{4-12}}{2}
-4 କୁ 3 ଥର ଗୁଣନ କରନ୍ତୁ.
x_{0}=\frac{-\left(-2\right)±\sqrt{-8}}{2}
4 କୁ -12 ସହ ଯୋଡନ୍ତୁ.
x_{0}=\frac{-\left(-2\right)±2\sqrt{2}i}{2}
-8 ର ବର୍ଗମୂଳ ବାହାର କରନ୍ତୁ.
x_{0}=\frac{2±2\sqrt{2}i}{2}
-2 ର ବିପରୀତ ହେଉଛି 2.
x_{0}=\frac{2+2\sqrt{2}i}{2}
ବର୍ତ୍ତମାନ ସମୀକରଣ x_{0}=\frac{2±2\sqrt{2}i}{2} ସମାଧାନ କରନ୍ତୁ ଯେତେବେଳେ ± ଯୁକ୍ତ ଅଟେ. 2 କୁ 2i\sqrt{2} ସହ ଯୋଡନ୍ତୁ.
x_{0}=1+\sqrt{2}i
2+2i\sqrt{2} କୁ 2 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x_{0}=\frac{-2\sqrt{2}i+2}{2}
ବର୍ତ୍ତମାନ ସମୀକରଣ x_{0}=\frac{2±2\sqrt{2}i}{2} ସମାଧାନ କରନ୍ତୁ ଯେତେବେଳେ ± ବିଯୁକ୍ତ ଅଟେ. 2 ରୁ 2i\sqrt{2} ବିୟୋଗ କରନ୍ତୁ.
x_{0}=-\sqrt{2}i+1
2-2i\sqrt{2} କୁ 2 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x_{0}=1+\sqrt{2}i x_{0}=-\sqrt{2}i+1
ବର୍ତ୍ତମାନ ସମୀକରଣ ସମାଧାନ ହୋଇଛି.
x_{0}^{2}-2x_{0}=-3
କ୍ୱାଡ୍ରାଟିକ୍‌ ସମୀକରଣଗୁଡିକ ଯେପରିକି ଏହି ଗୋଟିଏ ବର୍ଗ ବାହାର କରିବା ସମ୍ପୂର୍ଣ୍ଣ କରିବା ଦ୍ୱାରା ସମାଧାନ କରାଯାଇପାରିବ. ବର୍ଗ ବାହାର କରିବା ସମ୍ପୂର୍ଣ୍ଣ କରିବା ପାଇଁ, ସମୀକରଣ ପ୍ରଥମେ x^{2}+bx=c ପ୍ରକାରେ ହେବା ଆବଶ୍ୟକ.
x_{0}^{2}-2x_{0}+1=-3+1
-1 ପ୍ରାପ୍ତ କରିବା ପାଇଁ, x ଟର୍ମ୍‌‌ର ଗୁଣାଙ୍କ, -2 କୁ, 2 ଦ୍ୱାରା ବିଭକ୍ତ କରନ୍ତୁ. ତାପରେ ସମୀକରଣ ଉଭୟ ପାର୍ଶ୍ୱରେ -1 ର ବର୍ଗ ଯୋଡନ୍ତୁ. ଏହି ପଦକ୍ଷେପ ସମୀକରଣର ବାମ ହାତ ପାର୍ଶ୍ୱକୁ ଏକ ଯଥାର୍ଥ ବର୍ଗରେ ପରିଣତ କରିଥାଏ.
x_{0}^{2}-2x_{0}+1=-2
-3 କୁ 1 ସହ ଯୋଡନ୍ତୁ.
\left(x_{0}-1\right)^{2}=-2
ଗୁଣନୀୟକ x_{0}^{2}-2x_{0}+1. ସାଧାରଣତଃ, ଯେତେବେଳେ x^{2}+bx+c ଏକ ପୂର୍ଣ୍ଣ ବର୍ଗ ଅଟେ, ଏହାକୁ ସର୍ବଦା \left(x+\frac{b}{2}\right)^{2} ଭାବେ ଗୁଣନୀୟକ କରାଯାଇପାରିବ.
\sqrt{\left(x_{0}-1\right)^{2}}=\sqrt{-2}
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱର ବର୍ଗମୂଳ ନିଅନ୍ତୁ.
x_{0}-1=\sqrt{2}i x_{0}-1=-\sqrt{2}i
ସରଳୀକୃତ କରିବା.
x_{0}=1+\sqrt{2}i x_{0}=-\sqrt{2}i+1
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱରେ 1 ଯୋଡନ୍ତୁ.