x ପାଇଁ ସମାଧାନ କରନ୍ତୁ
x=\sqrt{7}+2\approx 4.645751311
x=2-\sqrt{7}\approx -0.645751311
ଗ୍ରାଫ୍
ଅଂଶୀଦାର
କ୍ଲିପ୍ ବୋର୍ଡ଼ରେ ନକଲ କରାଯାଇଛି
x^{2}-5x+2\left(x-1\right)=x+1
x କୁ x-5 ଦ୍ୱାରା ଗୁଣନ କରିବା ପାଇଁ ବିତରଣାତ୍ମକ ଗୁଣଧର୍ମ ବ୍ୟବହାର କରନ୍ତୁ.
x^{2}-5x+2x-2=x+1
2 କୁ x-1 ଦ୍ୱାରା ଗୁଣନ କରିବା ପାଇଁ ବିତରଣାତ୍ମକ ଗୁଣଧର୍ମ ବ୍ୟବହାର କରନ୍ତୁ.
x^{2}-3x-2=x+1
-3x ପାଇବାକୁ -5x ଏବଂ 2x ସମ୍ମେଳନ କରନ୍ତୁ.
x^{2}-3x-2-x=1
ଉଭୟ ପାର୍ଶ୍ୱରୁ x ବିୟୋଗ କରନ୍ତୁ.
x^{2}-4x-2=1
-4x ପାଇବାକୁ -3x ଏବଂ -x ସମ୍ମେଳନ କରନ୍ତୁ.
x^{2}-4x-2-1=0
ଉଭୟ ପାର୍ଶ୍ୱରୁ 1 ବିୟୋଗ କରନ୍ତୁ.
x^{2}-4x-3=0
-3 ପ୍ରାପ୍ତ କରିବାକୁ -2 ଏବଂ 1 ବିୟୋଗ କରନ୍ତୁ.
x=\frac{-\left(-4\right)±\sqrt{\left(-4\right)^{2}-4\left(-3\right)}}{2}
ଏହି ସମୀକରଣ ମାନାଙ୍କ ଆକାରରେ ରହିଛି: ax^{2}+bx+c=0. \frac{-b±\sqrt{b^{2}-4ac}}{2a} କ୍ୱାଡ୍ରାଟିକ୍ ସୂତ୍ରରେ, a ପାଇଁ 1, b ପାଇଁ -4, ଏବଂ c ପାଇଁ -3 ପ୍ରତିବଦଳ କରନ୍ତୁ.
x=\frac{-\left(-4\right)±\sqrt{16-4\left(-3\right)}}{2}
ବର୍ଗ -4.
x=\frac{-\left(-4\right)±\sqrt{16+12}}{2}
-4 କୁ -3 ଥର ଗୁଣନ କରନ୍ତୁ.
x=\frac{-\left(-4\right)±\sqrt{28}}{2}
16 କୁ 12 ସହ ଯୋଡନ୍ତୁ.
x=\frac{-\left(-4\right)±2\sqrt{7}}{2}
28 ର ବର୍ଗମୂଳ ବାହାର କରନ୍ତୁ.
x=\frac{4±2\sqrt{7}}{2}
-4 ର ବିପରୀତ ହେଉଛି 4.
x=\frac{2\sqrt{7}+4}{2}
ବର୍ତ୍ତମାନ ସମୀକରଣ x=\frac{4±2\sqrt{7}}{2} ସମାଧାନ କରନ୍ତୁ ଯେତେବେଳେ ± ଯୁକ୍ତ ଅଟେ. 4 କୁ 2\sqrt{7} ସହ ଯୋଡନ୍ତୁ.
x=\sqrt{7}+2
4+2\sqrt{7} କୁ 2 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x=\frac{4-2\sqrt{7}}{2}
ବର୍ତ୍ତମାନ ସମୀକରଣ x=\frac{4±2\sqrt{7}}{2} ସମାଧାନ କରନ୍ତୁ ଯେତେବେଳେ ± ବିଯୁକ୍ତ ଅଟେ. 4 ରୁ 2\sqrt{7} ବିୟୋଗ କରନ୍ତୁ.
x=2-\sqrt{7}
4-2\sqrt{7} କୁ 2 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x=\sqrt{7}+2 x=2-\sqrt{7}
ବର୍ତ୍ତମାନ ସମୀକରଣ ସମାଧାନ ହୋଇଛି.
x^{2}-5x+2\left(x-1\right)=x+1
x କୁ x-5 ଦ୍ୱାରା ଗୁଣନ କରିବା ପାଇଁ ବିତରଣାତ୍ମକ ଗୁଣଧର୍ମ ବ୍ୟବହାର କରନ୍ତୁ.
x^{2}-5x+2x-2=x+1
2 କୁ x-1 ଦ୍ୱାରା ଗୁଣନ କରିବା ପାଇଁ ବିତରଣାତ୍ମକ ଗୁଣଧର୍ମ ବ୍ୟବହାର କରନ୍ତୁ.
x^{2}-3x-2=x+1
-3x ପାଇବାକୁ -5x ଏବଂ 2x ସମ୍ମେଳନ କରନ୍ତୁ.
x^{2}-3x-2-x=1
ଉଭୟ ପାର୍ଶ୍ୱରୁ x ବିୟୋଗ କରନ୍ତୁ.
x^{2}-4x-2=1
-4x ପାଇବାକୁ -3x ଏବଂ -x ସମ୍ମେଳନ କରନ୍ତୁ.
x^{2}-4x=1+2
ଉଭୟ ପାର୍ଶ୍ଵକୁ 2 ଯୋଡନ୍ତୁ.
x^{2}-4x=3
3 ପ୍ରାପ୍ତ କରିବାକୁ 1 ଏବଂ 2 ଯୋଗ କରନ୍ତୁ.
x^{2}-4x+\left(-2\right)^{2}=3+\left(-2\right)^{2}
-2 ପ୍ରାପ୍ତ କରିବା ପାଇଁ, x ଟର୍ମ୍ର ଗୁଣାଙ୍କ, -4 କୁ, 2 ଦ୍ୱାରା ବିଭକ୍ତ କରନ୍ତୁ. ତାପରେ ସମୀକରଣ ଉଭୟ ପାର୍ଶ୍ୱରେ -2 ର ବର୍ଗ ଯୋଡନ୍ତୁ. ଏହି ପଦକ୍ଷେପ ସମୀକରଣର ବାମ ହାତ ପାର୍ଶ୍ୱକୁ ଏକ ଯଥାର୍ଥ ବର୍ଗରେ ପରିଣତ କରିଥାଏ.
x^{2}-4x+4=3+4
ବର୍ଗ -2.
x^{2}-4x+4=7
3 କୁ 4 ସହ ଯୋଡନ୍ତୁ.
\left(x-2\right)^{2}=7
ଗୁଣନୀୟକ x^{2}-4x+4. ସାଧାରଣତଃ, ଯେତେବେଳେ x^{2}+bx+c ଏକ ପୂର୍ଣ୍ଣ ବର୍ଗ ଅଟେ, ଏହାକୁ ସର୍ବଦା \left(x+\frac{b}{2}\right)^{2} ଭାବେ ଗୁଣନୀୟକ କରାଯାଇପାରିବ.
\sqrt{\left(x-2\right)^{2}}=\sqrt{7}
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱର ବର୍ଗମୂଳ ନିଅନ୍ତୁ.
x-2=\sqrt{7} x-2=-\sqrt{7}
ସରଳୀକୃତ କରିବା.
x=\sqrt{7}+2 x=2-\sqrt{7}
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱରେ 2 ଯୋଡନ୍ତୁ.
ଉଦାହରଣଗୁଡ଼ିକ
ଚତୁଷ୍ପଦୀ ସମୀକରଣ
{ x } ^ { 2 } - 4 x - 5 = 0
ତ୍ରିକୋଣମିତି
4 \sin \theta \cos \theta = 2 \sin \theta
ରୈଖିକ ସମୀକରଣ
y = 3x + 4
ବୀଜଗଣିତ
699 * 533
ମାଟ୍ରିକ୍ସ୍
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ସମକାଳୀନ ସମୀକରଣ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ବିଭେଦୀକରଣ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ଇଣ୍ଟିଗ୍ରେସନ୍
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ସୀମାଗୁଡ଼ିକ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}