p ପାଇଁ ସମାଧାନ କରନ୍ତୁ (ଜଟଳି ସମାଧାନ)
\left\{\begin{matrix}p=\frac{x^{3}-q}{x}\text{, }&x\neq 0\\p\in \mathrm{C}\text{, }&q=0\text{ and }x=0\end{matrix}\right.
p ପାଇଁ ସମାଧାନ କରନ୍ତୁ
\left\{\begin{matrix}p=\frac{x^{3}-q}{x}\text{, }&x\neq 0\\p\in \mathrm{R}\text{, }&x=0\text{ and }q=0\end{matrix}\right.
q ପାଇଁ ସମାଧାନ କରନ୍ତୁ
q=x\left(x^{2}-p\right)
ଗ୍ରାଫ୍
ଅଂଶୀଦାର
କ୍ଲିପ୍ ବୋର୍ଡ଼ରେ ନକଲ କରାଯାଇଛି
-px-q=-x^{3}
ଉଭୟ ପାର୍ଶ୍ୱରୁ x^{3} ବିୟୋଗ କରନ୍ତୁ. ଶୂନ୍ୟରୁ ଯେକୌଣସି ସଂଖ୍ୟା ବିୟୋଗ କଲେ ସେହି ସଂଖ୍ୟାର ବିଯୁକ୍ତାତ୍ମକ ରୂପ ମିଳିଥାଏ.
-px=-x^{3}+q
ଉଭୟ ପାର୍ଶ୍ଵକୁ q ଯୋଡନ୍ତୁ.
\left(-x\right)p=q-x^{3}
ସମୀକରଣ ମାନାଙ୍କ ରୂପରେ ରହିଛି.
\frac{\left(-x\right)p}{-x}=\frac{q-x^{3}}{-x}
ଉଭୟ ପାର୍ଶ୍ୱକୁ -x ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
p=\frac{q-x^{3}}{-x}
-x ଦ୍ୱାରା ବିଭାଜନ କରିବା -x ଦ୍ୱାରା ଗୁଣନକୁ ପୂର୍ବବତ୍ କରିଥାଏ.
p=x^{2}-\frac{q}{x}
q-x^{3} କୁ -x ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
-px-q=-x^{3}
ଉଭୟ ପାର୍ଶ୍ୱରୁ x^{3} ବିୟୋଗ କରନ୍ତୁ. ଶୂନ୍ୟରୁ ଯେକୌଣସି ସଂଖ୍ୟା ବିୟୋଗ କଲେ ସେହି ସଂଖ୍ୟାର ବିଯୁକ୍ତାତ୍ମକ ରୂପ ମିଳିଥାଏ.
-px=-x^{3}+q
ଉଭୟ ପାର୍ଶ୍ଵକୁ q ଯୋଡନ୍ତୁ.
\left(-x\right)p=q-x^{3}
ସମୀକରଣ ମାନାଙ୍କ ରୂପରେ ରହିଛି.
\frac{\left(-x\right)p}{-x}=\frac{q-x^{3}}{-x}
ଉଭୟ ପାର୍ଶ୍ୱକୁ -x ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
p=\frac{q-x^{3}}{-x}
-x ଦ୍ୱାରା ବିଭାଜନ କରିବା -x ଦ୍ୱାରା ଗୁଣନକୁ ପୂର୍ବବତ୍ କରିଥାଏ.
p=x^{2}-\frac{q}{x}
-x^{3}+q କୁ -x ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
-px-q=-x^{3}
ଉଭୟ ପାର୍ଶ୍ୱରୁ x^{3} ବିୟୋଗ କରନ୍ତୁ. ଶୂନ୍ୟରୁ ଯେକୌଣସି ସଂଖ୍ୟା ବିୟୋଗ କଲେ ସେହି ସଂଖ୍ୟାର ବିଯୁକ୍ତାତ୍ମକ ରୂପ ମିଳିଥାଏ.
-q=-x^{3}+px
ଉଭୟ ପାର୍ଶ୍ଵକୁ px ଯୋଡନ୍ତୁ.
-q=px-x^{3}
ସମୀକରଣ ମାନାଙ୍କ ରୂପରେ ରହିଛି.
\frac{-q}{-1}=\frac{x\left(p-x^{2}\right)}{-1}
ଉଭୟ ପାର୍ଶ୍ୱକୁ -1 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
q=\frac{x\left(p-x^{2}\right)}{-1}
-1 ଦ୍ୱାରା ବିଭାଜନ କରିବା -1 ଦ୍ୱାରା ଗୁଣନକୁ ପୂର୍ବବତ୍ କରିଥାଏ.
q=x^{3}-px
x\left(-x^{2}+p\right) କୁ -1 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
ଉଦାହରଣଗୁଡ଼ିକ
ଚତୁଷ୍ପଦୀ ସମୀକରଣ
{ x } ^ { 2 } - 4 x - 5 = 0
ତ୍ରିକୋଣମିତି
4 \sin \theta \cos \theta = 2 \sin \theta
ରୈଖିକ ସମୀକରଣ
y = 3x + 4
ବୀଜଗଣିତ
699 * 533
ମାଟ୍ରିକ୍ସ୍
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ସମକାଳୀନ ସମୀକରଣ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ବିଭେଦୀକରଣ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ଇଣ୍ଟିଗ୍ରେସନ୍
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ସୀମାଗୁଡ଼ିକ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}