x ପାଇଁ ସମାଧାନ କରନ୍ତୁ (ଜଟଳି ସମାଧାନ)
x=\frac{-\sqrt{7}i-1}{2}\approx -0.5-1.322875656i
x=-1
x=\frac{-1+\sqrt{7}i}{2}\approx -0.5+1.322875656i
x ପାଇଁ ସମାଧାନ କରନ୍ତୁ
x=-1
ଗ୍ରାଫ୍
ଅଂଶୀଦାର
କ୍ଲିପ୍ ବୋର୍ଡ଼ରେ ନକଲ କରାଯାଇଛି
±2,±1
ପରିମେୟ ମୂଳ ଉପପାଦ୍ୟ ଦ୍ୱାରା, ଏକ ପଲିନୋମିଆଲର ସମସ୍ତ ରେସନାଲ ରୁଟ୍ଗୁଡିକ\frac{p}{q} ରୂପରେ ରହିଛି, ଯେଉଁଠାରେ p କନଷ୍ଟାଣ୍ଟ ଟର୍ମ୍ 2 କୁ ବିଭାଜିତ କରିଥାଏ ଏବଂ q ଅଗ୍ରଣୀ ଗୁଣାଙ୍କ 1କୁ ବିଭାଜିତ କରିଥାଏ. ସମସ୍ତ ପ୍ରାର୍ଥୀଙ୍କୁ ତାଲିକାଭୁକ୍ତ କରନ୍ତୁ \frac{p}{q}.
x=-1
ସମସ୍ତ ଇଣ୍ଟିଜର୍ ମୂଲ୍ୟ ଚେଷ୍ଟା କରି ଏହିଭଳି ଗୋଟିଏ ବର୍ଗ ପାଆନ୍ତୁ, ସବୁଠାରୁ ଛୋଟ ସମ୍ପୂର୍ଣ୍ଣ ମୂଲ୍ୟରୁ ପ୍ରାରମ୍ଭ କରି. ଯଦି କୌଣସି ଇଣ୍ଟିଜର୍ ବର୍ଗ ମିଳେନାହିଁ, ଭଗ୍ନାଂଶ ଚେଷ୍ଟା କରନ୍ତୁ.
x^{2}+x+2=0
ଗୁଣନୀୟକ ଥିଓରମ୍ ଦ୍ୱାରା, x-k ହେଉଛି ପ୍ରତିଟି ରୁଟ୍ k ପାଇଁ ପଲିନୋମିଆଲର ଏକ ଫ୍ୟାକ୍ଟର ଅଟେ. x^{2}+x+2 ପ୍ରାପ୍ତ କରିବାକୁ x^{3}+2x^{2}+3x+2 କୁ x+1 ଦ୍ୱାରା ବିଭକ୍ତ କରନ୍ତୁ. ସେହି ସମୀକରଣକୁ ସମାଧାନ କରନ୍ତୁ ଯେଉଁଠାରେ ଫଳାଫଳ 0 ସହ ସମାନ ହୋଇଥାଏ.
x=\frac{-1±\sqrt{1^{2}-4\times 1\times 2}}{2}
ଫର୍ମ ax^{2}+bx+c=0 ଠାରୁ ସମସ୍ତ ସମୀକରଣଗୁଡିକ କ୍ୱାଡ୍ରାଟିକ୍ ଫର୍ମୁଲା ବ୍ୟବହାର କରି ସମାଧାନ କରାଯାଇପାରିବ: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. a ପାଇଁ 1, b ପାଇଁ 1, ଏବଂ c ପାଇଁ 2 କ୍ୱାଡ୍ରାଟିକ୍ ଫର୍ମୁଲାରେ ପ୍ରତିବଦଳ କରନ୍ତୁ.
x=\frac{-1±\sqrt{-7}}{2}
ହିସାବଗୁଡିକ କରନ୍ତୁ.
x=\frac{-\sqrt{7}i-1}{2} x=\frac{-1+\sqrt{7}i}{2}
± ଯୁକ୍ତ ଥିବା ବେଳେ ଏବଂ ± ବିଯୁକ୍ତ ଥିବା ବେଳେ ସମୀକରଣ x^{2}+x+2=0 ସମାଧାନ କରନ୍ତୁ.
x=-1 x=\frac{-\sqrt{7}i-1}{2} x=\frac{-1+\sqrt{7}i}{2}
ମିଳିଥିବା ସମସ୍ତ ସମାଧାନର ତାଲିକା ପ୍ରସ୍ତୁତ କରନ୍ତୁ.
±2,±1
ପରିମେୟ ମୂଳ ଉପପାଦ୍ୟ ଦ୍ୱାରା, ଏକ ପଲିନୋମିଆଲର ସମସ୍ତ ରେସନାଲ ରୁଟ୍ଗୁଡିକ\frac{p}{q} ରୂପରେ ରହିଛି, ଯେଉଁଠାରେ p କନଷ୍ଟାଣ୍ଟ ଟର୍ମ୍ 2 କୁ ବିଭାଜିତ କରିଥାଏ ଏବଂ q ଅଗ୍ରଣୀ ଗୁଣାଙ୍କ 1କୁ ବିଭାଜିତ କରିଥାଏ. ସମସ୍ତ ପ୍ରାର୍ଥୀଙ୍କୁ ତାଲିକାଭୁକ୍ତ କରନ୍ତୁ \frac{p}{q}.
x=-1
ସମସ୍ତ ଇଣ୍ଟିଜର୍ ମୂଲ୍ୟ ଚେଷ୍ଟା କରି ଏହିଭଳି ଗୋଟିଏ ବର୍ଗ ପାଆନ୍ତୁ, ସବୁଠାରୁ ଛୋଟ ସମ୍ପୂର୍ଣ୍ଣ ମୂଲ୍ୟରୁ ପ୍ରାରମ୍ଭ କରି. ଯଦି କୌଣସି ଇଣ୍ଟିଜର୍ ବର୍ଗ ମିଳେନାହିଁ, ଭଗ୍ନାଂଶ ଚେଷ୍ଟା କରନ୍ତୁ.
x^{2}+x+2=0
ଗୁଣନୀୟକ ଥିଓରମ୍ ଦ୍ୱାରା, x-k ହେଉଛି ପ୍ରତିଟି ରୁଟ୍ k ପାଇଁ ପଲିନୋମିଆଲର ଏକ ଫ୍ୟାକ୍ଟର ଅଟେ. x^{2}+x+2 ପ୍ରାପ୍ତ କରିବାକୁ x^{3}+2x^{2}+3x+2 କୁ x+1 ଦ୍ୱାରା ବିଭକ୍ତ କରନ୍ତୁ. ସେହି ସମୀକରଣକୁ ସମାଧାନ କରନ୍ତୁ ଯେଉଁଠାରେ ଫଳାଫଳ 0 ସହ ସମାନ ହୋଇଥାଏ.
x=\frac{-1±\sqrt{1^{2}-4\times 1\times 2}}{2}
ଫର୍ମ ax^{2}+bx+c=0 ଠାରୁ ସମସ୍ତ ସମୀକରଣଗୁଡିକ କ୍ୱାଡ୍ରାଟିକ୍ ଫର୍ମୁଲା ବ୍ୟବହାର କରି ସମାଧାନ କରାଯାଇପାରିବ: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. a ପାଇଁ 1, b ପାଇଁ 1, ଏବଂ c ପାଇଁ 2 କ୍ୱାଡ୍ରାଟିକ୍ ଫର୍ମୁଲାରେ ପ୍ରତିବଦଳ କରନ୍ତୁ.
x=\frac{-1±\sqrt{-7}}{2}
ହିସାବଗୁଡିକ କରନ୍ତୁ.
x\in \emptyset
ଯଦିଓ ଏକ ବିଯୁକ୍ତାତ୍ମକ ସଂଖ୍ୟାର ଚତୁର୍ଭୁଜ ମୂଳ ପ୍ରକୃତ କ୍ଷେତରେ ନ୍ୟସ୍ତ ହୋଇନାହିଁ, କୌଣସି ସମାଧାନ ନାହିଁ.
x=-1
ମିଳିଥିବା ସମସ୍ତ ସମାଧାନର ତାଲିକା ପ୍ରସ୍ତୁତ କରନ୍ତୁ.
ଉଦାହରଣଗୁଡ଼ିକ
ଚତୁଷ୍ପଦୀ ସମୀକରଣ
{ x } ^ { 2 } - 4 x - 5 = 0
ତ୍ରିକୋଣମିତି
4 \sin \theta \cos \theta = 2 \sin \theta
ରୈଖିକ ସମୀକରଣ
y = 3x + 4
ବୀଜଗଣିତ
699 * 533
ମାଟ୍ରିକ୍ସ୍
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ସମକାଳୀନ ସମୀକରଣ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ବିଭେଦୀକରଣ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ଇଣ୍ଟିଗ୍ରେସନ୍
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ସୀମାଗୁଡ଼ିକ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}