x ପାଇଁ ସମାଧାନ କରନ୍ତୁ
x\in \left(-\infty,3-\sqrt{7}\right)\cup \left(\sqrt{7}+3,\infty\right)
ଗ୍ରାଫ୍
ଅଂଶୀଦାର
କ୍ଲିପ୍ ବୋର୍ଡ଼ରେ ନକଲ କରାଯାଇଛି
x^{2}-6x+2=0
ଅସମତାକୁ ସମାଧାନ କରିବାକୁ, ହାମ ହାତ ପାର୍ଶ୍ୱର ଗୁଣକ ବାହାର କରନ୍ତୁ. ଟ୍ରାନ୍ସଫର୍ମେସନ୍ ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right)ବ୍ୟବହାର କରି କ୍ୱାଡ୍ରାଟିକ୍ ପଲିନୋମିଆଲ୍କୁ ଫ୍ୟାକ୍ଟର୍ କରାଯାଇପାରିବ, ଯେଉଁଠାରେ x_{1} ଏବଂ x_{2} ଦ୍ୱିଘାତ ସମୀକରଣ ax^{2}+bx+c=0 ର ସମାଧାନ ଅଟେ.
x=\frac{-\left(-6\right)±\sqrt{\left(-6\right)^{2}-4\times 1\times 2}}{2}
ଫର୍ମ ax^{2}+bx+c=0 ଠାରୁ ସମସ୍ତ ସମୀକରଣଗୁଡିକ କ୍ୱାଡ୍ରାଟିକ୍ ଫର୍ମୁଲା ବ୍ୟବହାର କରି ସମାଧାନ କରାଯାଇପାରିବ: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. a ପାଇଁ 1, b ପାଇଁ -6, ଏବଂ c ପାଇଁ 2 କ୍ୱାଡ୍ରାଟିକ୍ ଫର୍ମୁଲାରେ ପ୍ରତିବଦଳ କରନ୍ତୁ.
x=\frac{6±2\sqrt{7}}{2}
ହିସାବଗୁଡିକ କରନ୍ତୁ.
x=\sqrt{7}+3 x=3-\sqrt{7}
± ଯୁକ୍ତ ଥିବା ବେଳେ ଏବଂ ± ବିଯୁକ୍ତ ଥିବା ବେଳେ ସମୀକରଣ x=\frac{6±2\sqrt{7}}{2} ସମାଧାନ କରନ୍ତୁ.
\left(x-\left(\sqrt{7}+3\right)\right)\left(x-\left(3-\sqrt{7}\right)\right)>0
ପ୍ରାପ୍ତ ସମାଧାନଗୁଡିକ ବ୍ୟବହାର କରିବା ଦ୍ୱାରା ଅସମତାକୁ ପୁନଃ ଲେଖନ୍ତୁ.
x-\left(\sqrt{7}+3\right)<0 x-\left(3-\sqrt{7}\right)<0
ଉତ୍ପାଦ ଧନାତ୍ମକ ହେବା ପାଇଁ, x-\left(\sqrt{7}+3\right) ଏବଂ x-\left(3-\sqrt{7}\right) ଉଭୟ ଋଣାତ୍ମକ କିମ୍ବା ଉଭୟ ଧନାତ୍ମକ ହେବା ଆବଶ୍ୟକ. ଯେତେବେଳେ x-\left(\sqrt{7}+3\right) ଏବଂ x-\left(3-\sqrt{7}\right) ଉଭୟ ନେଗେଟିଭ୍ ରହିଥାଏ କେସ୍ ବିଚାର କରନ୍ତୁ.
x<3-\sqrt{7}
ଉଭୟ ଅସମତାକୁ ପରିପୂରଣ କରୁଥିବା ସମାଧାନ ହେଉଛି x<3-\sqrt{7}.
x-\left(3-\sqrt{7}\right)>0 x-\left(\sqrt{7}+3\right)>0
ଯେତେବେଳେ x-\left(\sqrt{7}+3\right) ଏବଂ x-\left(3-\sqrt{7}\right) ଉଭୟ ଧନାତ୍ମକ ରହିଥାଏ କେସ୍ ବିଚାର କରନ୍ତୁ.
x>\sqrt{7}+3
ଉଭୟ ଅସମତାକୁ ପରିପୂରଣ କରୁଥିବା ସମାଧାନ ହେଉଛି x>\sqrt{7}+3.
x<3-\sqrt{7}\text{; }x>\sqrt{7}+3
ଚୁଡାନ୍ତ ସମାଧାନ ହେଉଛି ପ୍ରାପ୍ତ ସମାଧାନଗୁଡିକର ଯୋଗ ଅଟେ.
ଉଦାହରଣଗୁଡ଼ିକ
ଚତୁଷ୍ପଦୀ ସମୀକରଣ
{ x } ^ { 2 } - 4 x - 5 = 0
ତ୍ରିକୋଣମିତି
4 \sin \theta \cos \theta = 2 \sin \theta
ରୈଖିକ ସମୀକରଣ
y = 3x + 4
ବୀଜଗଣିତ
699 * 533
ମାଟ୍ରିକ୍ସ୍
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ସମକାଳୀନ ସମୀକରଣ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ବିଭେଦୀକରଣ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ଇଣ୍ଟିଗ୍ରେସନ୍
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ସୀମାଗୁଡ଼ିକ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}