ମୁଖ୍ୟ ବିଷୟବସ୍ତୁକୁ ଛାଡି ଦିଅନ୍ତୁ
x ପାଇଁ ସମାଧାନ କରନ୍ତୁ
Tick mark Image
ଗ୍ରାଫ୍

ୱେବ୍ ସନ୍ଧାନରୁ ସମାନ ପ୍ରକାରର ସମସ୍ୟା

ଅଂଶୀଦାର

x^{2}-50x-5=0
ଏହି ପ୍ରଣାଳୀର ax^{2}+bx+c=0 ସମସ୍ତ ସମୀକରଣଗୁଡିକ କ୍ୱାଡ୍ରାଟିକ୍‌ ସୂତ୍ର: \frac{-b±\sqrt{b^{2}-4ac}}{2a} ବ୍ୟବହାର କରି ସମାଧାନ କରାଯାଇପାରିବ. କ୍ୱାଡ୍ରାଟିକ୍‌ ସୂତ୍ର ଦୁଇଟି ସମାଧାନ ପ୍ରଦାନ କରିଥାଏ, ଗୋଟିଏ ଯେତେବେଳେ ± ଯୋଗ ହୋଇଥାଏ ଏବଂ ଅନ୍ୟଟି ଯେତେବେଳେ ଏହା ବିୟୋଗ ହୋଇଥାଏ.
x=\frac{-\left(-50\right)±\sqrt{\left(-50\right)^{2}-4\left(-5\right)}}{2}
ଏହି ସମୀକରଣ ମାନାଙ୍କ ଆକାରରେ ରହିଛି: ax^{2}+bx+c=0. \frac{-b±\sqrt{b^{2}-4ac}}{2a} କ୍ୱାଡ୍ରାଟିକ୍‌ ସୂତ୍ରରେ, a ପାଇଁ 1, b ପାଇଁ -50, ଏବଂ c ପାଇଁ -5 ପ୍ରତିବଦଳ କରନ୍ତୁ.
x=\frac{-\left(-50\right)±\sqrt{2500-4\left(-5\right)}}{2}
ବର୍ଗ -50.
x=\frac{-\left(-50\right)±\sqrt{2500+20}}{2}
-4 କୁ -5 ଥର ଗୁଣନ କରନ୍ତୁ.
x=\frac{-\left(-50\right)±\sqrt{2520}}{2}
2500 କୁ 20 ସହ ଯୋଡନ୍ତୁ.
x=\frac{-\left(-50\right)±6\sqrt{70}}{2}
2520 ର ବର୍ଗମୂଳ ବାହାର କରନ୍ତୁ.
x=\frac{50±6\sqrt{70}}{2}
-50 ର ବିପରୀତ ହେଉଛି 50.
x=\frac{6\sqrt{70}+50}{2}
ବର୍ତ୍ତମାନ ସମୀକରଣ x=\frac{50±6\sqrt{70}}{2} ସମାଧାନ କରନ୍ତୁ ଯେତେବେଳେ ± ଯୁକ୍ତ ଅଟେ. 50 କୁ 6\sqrt{70} ସହ ଯୋଡନ୍ତୁ.
x=3\sqrt{70}+25
50+6\sqrt{70} କୁ 2 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x=\frac{50-6\sqrt{70}}{2}
ବର୍ତ୍ତମାନ ସମୀକରଣ x=\frac{50±6\sqrt{70}}{2} ସମାଧାନ କରନ୍ତୁ ଯେତେବେଳେ ± ବିଯୁକ୍ତ ଅଟେ. 50 ରୁ 6\sqrt{70} ବିୟୋଗ କରନ୍ତୁ.
x=25-3\sqrt{70}
50-6\sqrt{70} କୁ 2 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x=3\sqrt{70}+25 x=25-3\sqrt{70}
ବର୍ତ୍ତମାନ ସମୀକରଣ ସମାଧାନ ହୋଇଛି.
x^{2}-50x-5=0
କ୍ୱାଡ୍ରାଟିକ୍‌ ସମୀକରଣଗୁଡିକ ଯେପରିକି ଏହି ଗୋଟିଏ ବର୍ଗ ବାହାର କରିବା ସମ୍ପୂର୍ଣ୍ଣ କରିବା ଦ୍ୱାରା ସମାଧାନ କରାଯାଇପାରିବ. ବର୍ଗ ବାହାର କରିବା ସମ୍ପୂର୍ଣ୍ଣ କରିବା ପାଇଁ, ସମୀକରଣ ପ୍ରଥମେ x^{2}+bx=c ପ୍ରକାରେ ହେବା ଆବଶ୍ୟକ.
x^{2}-50x-5-\left(-5\right)=-\left(-5\right)
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱରେ 5 ଯୋଡନ୍ତୁ.
x^{2}-50x=-\left(-5\right)
ସଂପୃକ୍ତ ସଂଖ୍ୟାରୁ ସେହି -5 ବିୟୋଗ କରିବାରେ 0 ମିଳିଥାଏ.
x^{2}-50x=5
0 ରୁ -5 ବିୟୋଗ କରନ୍ତୁ.
x^{2}-50x+\left(-25\right)^{2}=5+\left(-25\right)^{2}
-25 ପ୍ରାପ୍ତ କରିବା ପାଇଁ, x ଟର୍ମ୍‌‌ର ଗୁଣାଙ୍କ, -50 କୁ, 2 ଦ୍ୱାରା ବିଭକ୍ତ କରନ୍ତୁ. ତାପରେ ସମୀକରଣ ଉଭୟ ପାର୍ଶ୍ୱରେ -25 ର ବର୍ଗ ଯୋଡନ୍ତୁ. ଏହି ପଦକ୍ଷେପ ସମୀକରଣର ବାମ ହାତ ପାର୍ଶ୍ୱକୁ ଏକ ଯଥାର୍ଥ ବର୍ଗରେ ପରିଣତ କରିଥାଏ.
x^{2}-50x+625=5+625
ବର୍ଗ -25.
x^{2}-50x+625=630
5 କୁ 625 ସହ ଯୋଡନ୍ତୁ.
\left(x-25\right)^{2}=630
ଗୁଣନୀୟକ x^{2}-50x+625. ସାଧାରଣତଃ, ଯେତେବେଳେ x^{2}+bx+c ଏକ ପୂର୍ଣ୍ଣ ବର୍ଗ ଅଟେ, ଏହାକୁ ସର୍ବଦା \left(x+\frac{b}{2}\right)^{2} ଭାବେ ଗୁଣନୀୟକ କରାଯାଇପାରିବ.
\sqrt{\left(x-25\right)^{2}}=\sqrt{630}
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱର ବର୍ଗମୂଳ ନିଅନ୍ତୁ.
x-25=3\sqrt{70} x-25=-3\sqrt{70}
ସରଳୀକୃତ କରିବା.
x=3\sqrt{70}+25 x=25-3\sqrt{70}
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱରେ 25 ଯୋଡନ୍ତୁ.