x ପାଇଁ ସମାଧାନ କରନ୍ତୁ
x=5
x=0
ଗ୍ରାଫ୍
ଅଂଶୀଦାର
କ୍ଲିପ୍ ବୋର୍ଡ଼ରେ ନକଲ କରାଯାଇଛି
x^{2}-5x-\frac{0}{\pi }=0
ଉଭୟ ପାର୍ଶ୍ୱରୁ \frac{0}{\pi } ବିୟୋଗ କରନ୍ତୁ.
\frac{\left(x^{2}-5x\right)\pi }{\pi }-\frac{0}{\pi }=0
ଏକ୍ସପ୍ରେସନ୍ରେ ଯୋଗ କିମ୍ବା ବିଯୋଗ କରିବାକୁ, ସେଗୁଡିକର ହରଗୁଡିକୁ ସମାନ କରିବାକୁ ସେଗୁଡିକୁ ବିସ୍ତାରିତ କରନ୍ତୁ. x^{2}-5x କୁ \frac{\pi }{\pi } ଥର ଗୁଣନ କରନ୍ତୁ.
\frac{\left(x^{2}-5x\right)\pi -0}{\pi }=0
ଯେହେତୁ \frac{\left(x^{2}-5x\right)\pi }{\pi } ଏବଂ \frac{0}{\pi } ର ସମାନ ହର ରହିଛି, ସେଗୁଡିକର ହରଗୁଡିକୁ ବିଯୋଗ କରିବା ଦ୍ୱାରା ସେଗୁଡିକୁ ବିଯୋଗ କରନ୍ତୁ.
\frac{x^{2}\pi -5x\pi }{\pi }=0
\left(x^{2}-5x\right)\pi -0 ରେ ଗୁଣନଗୁଡିକ କରନ୍ତୁ.
-5x+x^{2}=0
-5x+x^{2} ପ୍ରାପ୍ତ କରିବାକୁ x^{2}\pi -5x\pi ର ପ୍ରତିଟି ପଦକୁ \pi ଦ୍ୱାରା ବିଭକ୍ତ କରନ୍ତୁ.
x\left(-5+x\right)=0
x ର ଗୁଣନିୟକ ବାହାର କରନ୍ତୁ.
x=0 x=5
ସମୀକରଣ ସମାଧାନଗୁଡିକ ନିର୍ଣ୍ଣୟ କରିବାକୁ, x=0 ଏବଂ -5+x=0 ସମାଧାନ କରନ୍ତୁ.
x^{2}-5x-\frac{0}{\pi }=0
ଉଭୟ ପାର୍ଶ୍ୱରୁ \frac{0}{\pi } ବିୟୋଗ କରନ୍ତୁ.
\frac{\left(x^{2}-5x\right)\pi }{\pi }-\frac{0}{\pi }=0
ଏକ୍ସପ୍ରେସନ୍ରେ ଯୋଗ କିମ୍ବା ବିଯୋଗ କରିବାକୁ, ସେଗୁଡିକର ହରଗୁଡିକୁ ସମାନ କରିବାକୁ ସେଗୁଡିକୁ ବିସ୍ତାରିତ କରନ୍ତୁ. x^{2}-5x କୁ \frac{\pi }{\pi } ଥର ଗୁଣନ କରନ୍ତୁ.
\frac{\left(x^{2}-5x\right)\pi -0}{\pi }=0
ଯେହେତୁ \frac{\left(x^{2}-5x\right)\pi }{\pi } ଏବଂ \frac{0}{\pi } ର ସମାନ ହର ରହିଛି, ସେଗୁଡିକର ହରଗୁଡିକୁ ବିଯୋଗ କରିବା ଦ୍ୱାରା ସେଗୁଡିକୁ ବିଯୋଗ କରନ୍ତୁ.
\frac{x^{2}\pi -5x\pi }{\pi }=0
\left(x^{2}-5x\right)\pi -0 ରେ ଗୁଣନଗୁଡିକ କରନ୍ତୁ.
-5x+x^{2}=0
-5x+x^{2} ପ୍ରାପ୍ତ କରିବାକୁ x^{2}\pi -5x\pi ର ପ୍ରତିଟି ପଦକୁ \pi ଦ୍ୱାରା ବିଭକ୍ତ କରନ୍ତୁ.
x^{2}-5x=0
ଏହି ପ୍ରଣାଳୀର ax^{2}+bx+c=0 ସମସ୍ତ ସମୀକରଣଗୁଡିକ କ୍ୱାଡ୍ରାଟିକ୍ ସୂତ୍ର: \frac{-b±\sqrt{b^{2}-4ac}}{2a} ବ୍ୟବହାର କରି ସମାଧାନ କରାଯାଇପାରିବ. କ୍ୱାଡ୍ରାଟିକ୍ ସୂତ୍ର ଦୁଇଟି ସମାଧାନ ପ୍ରଦାନ କରିଥାଏ, ଗୋଟିଏ ଯେତେବେଳେ ± ଯୋଗ ହୋଇଥାଏ ଏବଂ ଅନ୍ୟଟି ଯେତେବେଳେ ଏହା ବିୟୋଗ ହୋଇଥାଏ.
x=\frac{-\left(-5\right)±\sqrt{\left(-5\right)^{2}}}{2}
ଏହି ସମୀକରଣ ମାନାଙ୍କ ଆକାରରେ ରହିଛି: ax^{2}+bx+c=0. \frac{-b±\sqrt{b^{2}-4ac}}{2a} କ୍ୱାଡ୍ରାଟିକ୍ ସୂତ୍ରରେ, a ପାଇଁ 1, b ପାଇଁ -5, ଏବଂ c ପାଇଁ 0 ପ୍ରତିବଦଳ କରନ୍ତୁ.
x=\frac{-\left(-5\right)±5}{2}
\left(-5\right)^{2} ର ବର୍ଗମୂଳ ବାହାର କରନ୍ତୁ.
x=\frac{5±5}{2}
-5 ର ବିପରୀତ ହେଉଛି 5.
x=\frac{10}{2}
ବର୍ତ୍ତମାନ ସମୀକରଣ x=\frac{5±5}{2} ସମାଧାନ କରନ୍ତୁ ଯେତେବେଳେ ± ଯୁକ୍ତ ଅଟେ. 5 କୁ 5 ସହ ଯୋଡନ୍ତୁ.
x=5
10 କୁ 2 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x=\frac{0}{2}
ବର୍ତ୍ତମାନ ସମୀକରଣ x=\frac{5±5}{2} ସମାଧାନ କରନ୍ତୁ ଯେତେବେଳେ ± ବିଯୁକ୍ତ ଅଟେ. 5 ରୁ 5 ବିୟୋଗ କରନ୍ତୁ.
x=0
0 କୁ 2 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x=5 x=0
ବର୍ତ୍ତମାନ ସମୀକରଣ ସମାଧାନ ହୋଇଛି.
x^{2}-5x-\frac{0}{\pi }=0
ଉଭୟ ପାର୍ଶ୍ୱରୁ \frac{0}{\pi } ବିୟୋଗ କରନ୍ତୁ.
\frac{\left(x^{2}-5x\right)\pi }{\pi }-\frac{0}{\pi }=0
ଏକ୍ସପ୍ରେସନ୍ରେ ଯୋଗ କିମ୍ବା ବିଯୋଗ କରିବାକୁ, ସେଗୁଡିକର ହରଗୁଡିକୁ ସମାନ କରିବାକୁ ସେଗୁଡିକୁ ବିସ୍ତାରିତ କରନ୍ତୁ. x^{2}-5x କୁ \frac{\pi }{\pi } ଥର ଗୁଣନ କରନ୍ତୁ.
\frac{\left(x^{2}-5x\right)\pi -0}{\pi }=0
ଯେହେତୁ \frac{\left(x^{2}-5x\right)\pi }{\pi } ଏବଂ \frac{0}{\pi } ର ସମାନ ହର ରହିଛି, ସେଗୁଡିକର ହରଗୁଡିକୁ ବିଯୋଗ କରିବା ଦ୍ୱାରା ସେଗୁଡିକୁ ବିଯୋଗ କରନ୍ତୁ.
\frac{x^{2}\pi -5x\pi }{\pi }=0
\left(x^{2}-5x\right)\pi -0 ରେ ଗୁଣନଗୁଡିକ କରନ୍ତୁ.
-5x+x^{2}=0
-5x+x^{2} ପ୍ରାପ୍ତ କରିବାକୁ x^{2}\pi -5x\pi ର ପ୍ରତିଟି ପଦକୁ \pi ଦ୍ୱାରା ବିଭକ୍ତ କରନ୍ତୁ.
x^{2}-5x=0
କ୍ୱାଡ୍ରାଟିକ୍ ସମୀକରଣଗୁଡିକ ଯେପରିକି ଏହି ଗୋଟିଏ ବର୍ଗ ବାହାର କରିବା ସମ୍ପୂର୍ଣ୍ଣ କରିବା ଦ୍ୱାରା ସମାଧାନ କରାଯାଇପାରିବ. ବର୍ଗ ବାହାର କରିବା ସମ୍ପୂର୍ଣ୍ଣ କରିବା ପାଇଁ, ସମୀକରଣ ପ୍ରଥମେ x^{2}+bx=c ପ୍ରକାରେ ହେବା ଆବଶ୍ୟକ.
x^{2}-5x+\left(-\frac{5}{2}\right)^{2}=\left(-\frac{5}{2}\right)^{2}
-\frac{5}{2} ପ୍ରାପ୍ତ କରିବା ପାଇଁ, x ଟର୍ମ୍ର ଗୁଣାଙ୍କ, -5 କୁ, 2 ଦ୍ୱାରା ବିଭକ୍ତ କରନ୍ତୁ. ତାପରେ ସମୀକରଣ ଉଭୟ ପାର୍ଶ୍ୱରେ -\frac{5}{2} ର ବର୍ଗ ଯୋଡନ୍ତୁ. ଏହି ପଦକ୍ଷେପ ସମୀକରଣର ବାମ ହାତ ପାର୍ଶ୍ୱକୁ ଏକ ଯଥାର୍ଥ ବର୍ଗରେ ପରିଣତ କରିଥାଏ.
x^{2}-5x+\frac{25}{4}=\frac{25}{4}
ଭଗ୍ନାଂଶର ଉଭୟ ଲବ ଓ ହରର ବର୍ଗ ବାହାର କରିବା ଦ୍ୱାରା -\frac{5}{2} ବର୍ଗ ବାହାର କରନ୍ତୁ.
\left(x-\frac{5}{2}\right)^{2}=\frac{25}{4}
ଗୁଣନୀୟକ x^{2}-5x+\frac{25}{4}. ସାଧାରଣତଃ, ଯେତେବେଳେ x^{2}+bx+c ଏକ ପୂର୍ଣ୍ଣ ବର୍ଗ ଅଟେ, ଏହାକୁ ସର୍ବଦା \left(x+\frac{b}{2}\right)^{2} ଭାବେ ଗୁଣନୀୟକ କରାଯାଇପାରିବ.
\sqrt{\left(x-\frac{5}{2}\right)^{2}}=\sqrt{\frac{25}{4}}
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱର ବର୍ଗମୂଳ ନିଅନ୍ତୁ.
x-\frac{5}{2}=\frac{5}{2} x-\frac{5}{2}=-\frac{5}{2}
ସରଳୀକୃତ କରିବା.
x=5 x=0
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱରେ \frac{5}{2} ଯୋଡନ୍ତୁ.
ଉଦାହରଣଗୁଡ଼ିକ
ଚତୁଷ୍ପଦୀ ସମୀକରଣ
{ x } ^ { 2 } - 4 x - 5 = 0
ତ୍ରିକୋଣମିତି
4 \sin \theta \cos \theta = 2 \sin \theta
ରୈଖିକ ସମୀକରଣ
y = 3x + 4
ବୀଜଗଣିତ
699 * 533
ମାଟ୍ରିକ୍ସ୍
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ସମକାଳୀନ ସମୀକରଣ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ବିଭେଦୀକରଣ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ଇଣ୍ଟିଗ୍ରେସନ୍
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ସୀମାଗୁଡ଼ିକ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}