ମୁଖ୍ୟ ବିଷୟବସ୍ତୁକୁ ଛାଡି ଦିଅନ୍ତୁ
ମୂଲ୍ୟାୟନ କରିବା
Tick mark Image
ଗୁଣକ
Tick mark Image
ଗ୍ରାଫ୍

ୱେବ୍ ସନ୍ଧାନରୁ ସମାନ ପ୍ରକାରର ସମସ୍ୟା

ଅଂଶୀଦାର

-3-2x+2+x^{2}-x+x
0 ପାଇବାକୁ x^{2} ଏବଂ -x^{2} ସମ୍ମେଳନ କରନ୍ତୁ.
-1-2x+x^{2}-x+x
-1 ପ୍ରାପ୍ତ କରିବାକୁ -3 ଏବଂ 2 ଯୋଗ କରନ୍ତୁ.
-1-3x+x^{2}+x
-3x ପାଇବାକୁ -2x ଏବଂ -x ସମ୍ମେଳନ କରନ୍ତୁ.
-1-2x+x^{2}
-2x ପାଇବାକୁ -3x ଏବଂ x ସମ୍ମେଳନ କରନ୍ତୁ.
factor(-3-2x+2+x^{2}-x+x)
0 ପାଇବାକୁ x^{2} ଏବଂ -x^{2} ସମ୍ମେଳନ କରନ୍ତୁ.
factor(-1-2x+x^{2}-x+x)
-1 ପ୍ରାପ୍ତ କରିବାକୁ -3 ଏବଂ 2 ଯୋଗ କରନ୍ତୁ.
factor(-1-3x+x^{2}+x)
-3x ପାଇବାକୁ -2x ଏବଂ -x ସମ୍ମେଳନ କରନ୍ତୁ.
factor(-1-2x+x^{2})
-2x ପାଇବାକୁ -3x ଏବଂ x ସମ୍ମେଳନ କରନ୍ତୁ.
x^{2}-2x-1=0
ଟ୍ରାନ୍ସଫର୍ମେସନ୍‌ ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right)ବ୍ୟବହାର କରି କ୍ୱାଡ୍ରାଟିକ୍ ପଲିନୋମିଆଲ୍‌‌କୁ ଫ୍ୟାକ୍ଟର୍‌ କରାଯାଇପାରିବ, ଯେଉଁଠାରେ x_{1} ଏବଂ x_{2} ଦ୍ୱିଘାତ ସମୀକରଣ ax^{2}+bx+c=0 ର ସମାଧାନ ଅଟେ.
x=\frac{-\left(-2\right)±\sqrt{\left(-2\right)^{2}-4\left(-1\right)}}{2}
ଏହି ପ୍ରଣାଳୀର ax^{2}+bx+c=0 ସମସ୍ତ ସମୀକରଣଗୁଡିକ କ୍ୱାଡ୍ରାଟିକ୍‌ ସୂତ୍ର: \frac{-b±\sqrt{b^{2}-4ac}}{2a} ବ୍ୟବହାର କରି ସମାଧାନ କରାଯାଇପାରିବ. କ୍ୱାଡ୍ରାଟିକ୍‌ ସୂତ୍ର ଦୁଇଟି ସମାଧାନ ପ୍ରଦାନ କରିଥାଏ, ଗୋଟିଏ ଯେତେବେଳେ ± ଯୋଗ ହୋଇଥାଏ ଏବଂ ଅନ୍ୟଟି ଯେତେବେଳେ ଏହା ବିୟୋଗ ହୋଇଥାଏ.
x=\frac{-\left(-2\right)±\sqrt{4-4\left(-1\right)}}{2}
ବର୍ଗ -2.
x=\frac{-\left(-2\right)±\sqrt{4+4}}{2}
-4 କୁ -1 ଥର ଗୁଣନ କରନ୍ତୁ.
x=\frac{-\left(-2\right)±\sqrt{8}}{2}
4 କୁ 4 ସହ ଯୋଡନ୍ତୁ.
x=\frac{-\left(-2\right)±2\sqrt{2}}{2}
8 ର ବର୍ଗମୂଳ ବାହାର କରନ୍ତୁ.
x=\frac{2±2\sqrt{2}}{2}
-2 ର ବିପରୀତ ହେଉଛି 2.
x=\frac{2\sqrt{2}+2}{2}
ବର୍ତ୍ତମାନ ସମୀକରଣ x=\frac{2±2\sqrt{2}}{2} ସମାଧାନ କରନ୍ତୁ ଯେତେବେଳେ ± ଯୁକ୍ତ ଅଟେ. 2 କୁ 2\sqrt{2} ସହ ଯୋଡନ୍ତୁ.
x=\sqrt{2}+1
2+2\sqrt{2} କୁ 2 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x=\frac{2-2\sqrt{2}}{2}
ବର୍ତ୍ତମାନ ସମୀକରଣ x=\frac{2±2\sqrt{2}}{2} ସମାଧାନ କରନ୍ତୁ ଯେତେବେଳେ ± ବିଯୁକ୍ତ ଅଟେ. 2 ରୁ 2\sqrt{2} ବିୟୋଗ କରନ୍ତୁ.
x=1-\sqrt{2}
2-2\sqrt{2} କୁ 2 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x^{2}-2x-1=\left(x-\left(\sqrt{2}+1\right)\right)\left(x-\left(1-\sqrt{2}\right)\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) ବ୍ୟବାହର କରି ମୂଳ ଅଭିବ୍ୟକ୍ତିର ଗୁଣକ ନିର୍ଣ୍ଣୟ କରନ୍ତୁ. x_{1} ପାଇଁ 1+\sqrt{2} ଏବଂ x_{2} ପାଇଁ 1-\sqrt{2} ପ୍ରତିବଦଳ କରନ୍ତୁ.