x ପାଇଁ ସମାଧାନ କରନ୍ତୁ (ଜଟଳି ସମାଧାନ)
x=9+\sqrt{26}i\approx 9+5.099019514i
x=-\sqrt{26}i+9\approx 9-5.099019514i
ଗ୍ରାଫ୍
ଅଂଶୀଦାର
କ୍ଲିପ୍ ବୋର୍ଡ଼ରେ ନକଲ କରାଯାଇଛି
x^{2}-25x+104+7x=-3
ଉଭୟ ପାର୍ଶ୍ଵକୁ 7x ଯୋଡନ୍ତୁ.
x^{2}-18x+104=-3
-18x ପାଇବାକୁ -25x ଏବଂ 7x ସମ୍ମେଳନ କରନ୍ତୁ.
x^{2}-18x+104+3=0
ଉଭୟ ପାର୍ଶ୍ଵକୁ 3 ଯୋଡନ୍ତୁ.
x^{2}-18x+107=0
107 ପ୍ରାପ୍ତ କରିବାକୁ 104 ଏବଂ 3 ଯୋଗ କରନ୍ତୁ.
x=\frac{-\left(-18\right)±\sqrt{\left(-18\right)^{2}-4\times 107}}{2}
ଏହି ସମୀକରଣ ମାନାଙ୍କ ଆକାରରେ ରହିଛି: ax^{2}+bx+c=0. \frac{-b±\sqrt{b^{2}-4ac}}{2a} କ୍ୱାଡ୍ରାଟିକ୍ ସୂତ୍ରରେ, a ପାଇଁ 1, b ପାଇଁ -18, ଏବଂ c ପାଇଁ 107 ପ୍ରତିବଦଳ କରନ୍ତୁ.
x=\frac{-\left(-18\right)±\sqrt{324-4\times 107}}{2}
ବର୍ଗ -18.
x=\frac{-\left(-18\right)±\sqrt{324-428}}{2}
-4 କୁ 107 ଥର ଗୁଣନ କରନ୍ତୁ.
x=\frac{-\left(-18\right)±\sqrt{-104}}{2}
324 କୁ -428 ସହ ଯୋଡନ୍ତୁ.
x=\frac{-\left(-18\right)±2\sqrt{26}i}{2}
-104 ର ବର୍ଗମୂଳ ବାହାର କରନ୍ତୁ.
x=\frac{18±2\sqrt{26}i}{2}
-18 ର ବିପରୀତ ହେଉଛି 18.
x=\frac{18+2\sqrt{26}i}{2}
ବର୍ତ୍ତମାନ ସମୀକରଣ x=\frac{18±2\sqrt{26}i}{2} ସମାଧାନ କରନ୍ତୁ ଯେତେବେଳେ ± ଯୁକ୍ତ ଅଟେ. 18 କୁ 2i\sqrt{26} ସହ ଯୋଡନ୍ତୁ.
x=9+\sqrt{26}i
18+2i\sqrt{26} କୁ 2 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x=\frac{-2\sqrt{26}i+18}{2}
ବର୍ତ୍ତମାନ ସମୀକରଣ x=\frac{18±2\sqrt{26}i}{2} ସମାଧାନ କରନ୍ତୁ ଯେତେବେଳେ ± ବିଯୁକ୍ତ ଅଟେ. 18 ରୁ 2i\sqrt{26} ବିୟୋଗ କରନ୍ତୁ.
x=-\sqrt{26}i+9
18-2i\sqrt{26} କୁ 2 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x=9+\sqrt{26}i x=-\sqrt{26}i+9
ବର୍ତ୍ତମାନ ସମୀକରଣ ସମାଧାନ ହୋଇଛି.
x^{2}-25x+104+7x=-3
ଉଭୟ ପାର୍ଶ୍ଵକୁ 7x ଯୋଡନ୍ତୁ.
x^{2}-18x+104=-3
-18x ପାଇବାକୁ -25x ଏବଂ 7x ସମ୍ମେଳନ କରନ୍ତୁ.
x^{2}-18x=-3-104
ଉଭୟ ପାର୍ଶ୍ୱରୁ 104 ବିୟୋଗ କରନ୍ତୁ.
x^{2}-18x=-107
-107 ପ୍ରାପ୍ତ କରିବାକୁ -3 ଏବଂ 104 ବିୟୋଗ କରନ୍ତୁ.
x^{2}-18x+\left(-9\right)^{2}=-107+\left(-9\right)^{2}
-9 ପ୍ରାପ୍ତ କରିବା ପାଇଁ, x ଟର୍ମ୍ର ଗୁଣାଙ୍କ, -18 କୁ, 2 ଦ୍ୱାରା ବିଭକ୍ତ କରନ୍ତୁ. ତାପରେ ସମୀକରଣ ଉଭୟ ପାର୍ଶ୍ୱରେ -9 ର ବର୍ଗ ଯୋଡନ୍ତୁ. ଏହି ପଦକ୍ଷେପ ସମୀକରଣର ବାମ ହାତ ପାର୍ଶ୍ୱକୁ ଏକ ଯଥାର୍ଥ ବର୍ଗରେ ପରିଣତ କରିଥାଏ.
x^{2}-18x+81=-107+81
ବର୍ଗ -9.
x^{2}-18x+81=-26
-107 କୁ 81 ସହ ଯୋଡନ୍ତୁ.
\left(x-9\right)^{2}=-26
ଗୁଣନୀୟକ x^{2}-18x+81. ସାଧାରଣତଃ, ଯେତେବେଳେ x^{2}+bx+c ଏକ ପୂର୍ଣ୍ଣ ବର୍ଗ ଅଟେ, ଏହାକୁ ସର୍ବଦା \left(x+\frac{b}{2}\right)^{2} ଭାବେ ଗୁଣନୀୟକ କରାଯାଇପାରିବ.
\sqrt{\left(x-9\right)^{2}}=\sqrt{-26}
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱର ବର୍ଗମୂଳ ନିଅନ୍ତୁ.
x-9=\sqrt{26}i x-9=-\sqrt{26}i
ସରଳୀକୃତ କରିବା.
x=9+\sqrt{26}i x=-\sqrt{26}i+9
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱରେ 9 ଯୋଡନ୍ତୁ.
ଉଦାହରଣଗୁଡ଼ିକ
ଚତୁଷ୍ପଦୀ ସମୀକରଣ
{ x } ^ { 2 } - 4 x - 5 = 0
ତ୍ରିକୋଣମିତି
4 \sin \theta \cos \theta = 2 \sin \theta
ରୈଖିକ ସମୀକରଣ
y = 3x + 4
ବୀଜଗଣିତ
699 * 533
ମାଟ୍ରିକ୍ସ୍
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ସମକାଳୀନ ସମୀକରଣ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ବିଭେଦୀକରଣ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ଇଣ୍ଟିଗ୍ରେସନ୍
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ସୀମାଗୁଡ଼ିକ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}