ମୁଖ୍ୟ ବିଷୟବସ୍ତୁକୁ ଛାଡି ଦିଅନ୍ତୁ
x ପାଇଁ ସମାଧାନ କରନ୍ତୁ
Tick mark Image
ଗ୍ରାଫ୍

ୱେବ୍ ସନ୍ଧାନରୁ ସମାନ ପ୍ରକାରର ସମସ୍ୟା

ଅଂଶୀଦାର

x^{2}-2x-1=0
ଅସମତାକୁ ସମାଧାନ କରିବାକୁ, ହାମ ହାତ ପାର୍ଶ୍ୱର ଗୁଣକ ବାହାର କରନ୍ତୁ. ଟ୍ରାନ୍ସଫର୍ମେସନ୍‌ ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right)ବ୍ୟବହାର କରି କ୍ୱାଡ୍ରାଟିକ୍ ପଲିନୋମିଆଲ୍‌‌କୁ ଫ୍ୟାକ୍ଟର୍‌ କରାଯାଇପାରିବ, ଯେଉଁଠାରେ x_{1} ଏବଂ x_{2} ଦ୍ୱିଘାତ ସମୀକରଣ ax^{2}+bx+c=0 ର ସମାଧାନ ଅଟେ.
x=\frac{-\left(-2\right)±\sqrt{\left(-2\right)^{2}-4\times 1\left(-1\right)}}{2}
ଫର୍ମ ax^{2}+bx+c=0 ଠାରୁ ସମସ୍ତ ସମୀକରଣଗୁଡିକ କ୍ୱାଡ୍ରାଟିକ୍‌ ଫର୍ମୁଲା ବ୍ୟବହାର କରି ସମାଧାନ କରାଯାଇପାରିବ: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. a ପାଇଁ 1, b ପାଇଁ -2, ଏବଂ c ପାଇଁ -1 କ୍ୱାଡ୍ରାଟିକ୍‌ ଫର୍ମୁଲାରେ ପ୍ରତିବଦଳ କରନ୍ତୁ.
x=\frac{2±2\sqrt{2}}{2}
ହିସାବଗୁଡିକ କରନ୍ତୁ.
x=\sqrt{2}+1 x=1-\sqrt{2}
± ଯୁକ୍ତ ଥିବା ବେଳେ ଏବଂ ± ବିଯୁକ୍ତ ଥିବା ବେଳେ ସମୀକରଣ x=\frac{2±2\sqrt{2}}{2} ସମାଧାନ କରନ୍ତୁ.
\left(x-\left(\sqrt{2}+1\right)\right)\left(x-\left(1-\sqrt{2}\right)\right)\leq 0
ପ୍ରାପ୍ତ ସମାଧାନଗୁଡିକ ବ୍ୟବହାର କରିବା ଦ୍ୱାରା ଅସମତାକୁ ପୁନଃ ଲେଖନ୍ତୁ.
x-\left(\sqrt{2}+1\right)\geq 0 x-\left(1-\sqrt{2}\right)\leq 0
ଉତ୍ପାଦ ≤0 ହେବା ପାଇଁ, x-\left(\sqrt{2}+1\right) ଓ x-\left(1-\sqrt{2}\right) ମୂଲ୍ୟଗୁଡିକ ମଧ୍ୟରୁ ଗୋଟିଏ ≥0 ହେବା ଆବଶ୍ୟକ ଏବଂ ଅନ୍ୟଟି ≤0 ହେବା ଆବଶ୍ୟକ. ଯେତେବେଳେ x-\left(\sqrt{2}+1\right)\geq 0 ଏବଂ x-\left(1-\sqrt{2}\right)\leq 0 ଥାଏ ଚୁକ୍ତିି ବିଚାର କରନ୍ତୁ
x\in \emptyset
ଏହା କୌଣସି x ପାଇଁ ମିଥ୍ୟା ଅଟେ.
x-\left(1-\sqrt{2}\right)\geq 0 x-\left(\sqrt{2}+1\right)\leq 0
ଯେତେବେଳେ x-\left(\sqrt{2}+1\right)\leq 0 ଏବଂ x-\left(1-\sqrt{2}\right)\geq 0 ଥାଏ ଚୁକ୍ତିି ବିଚାର କରନ୍ତୁ
x\in \begin{bmatrix}1-\sqrt{2},\sqrt{2}+1\end{bmatrix}
ଉଭୟ ଅସମତାକୁ ପରିପୂରଣ କରୁଥିବା ସମାଧାନ ହେଉଛି x\in \left[1-\sqrt{2},\sqrt{2}+1\right].
x\in \begin{bmatrix}1-\sqrt{2},\sqrt{2}+1\end{bmatrix}
ଚୁଡାନ୍ତ ସମାଧାନ ହେଉଛି ପ୍ରାପ୍ତ ସମାଧାନଗୁଡିକର ଯୋଗ ଅଟେ.