ମୁଖ୍ୟ ବିଷୟବସ୍ତୁକୁ ଛାଡି ଦିଅନ୍ତୁ
x ପାଇଁ ସମାଧାନ କରନ୍ତୁ (ଜଟଳି ସମାଧାନ)
Tick mark Image
ଗ୍ରାଫ୍

ୱେବ୍ ସନ୍ଧାନରୁ ସମାନ ପ୍ରକାରର ସମସ୍ୟା

ଅଂଶୀଦାର

x^{2}+\left(-2\sqrt{3}\right)x+8=0
ଏହି ପ୍ରଣାଳୀର ax^{2}+bx+c=0 ସମସ୍ତ ସମୀକରଣଗୁଡିକ କ୍ୱାଡ୍ରାଟିକ୍‌ ସୂତ୍ର: \frac{-b±\sqrt{b^{2}-4ac}}{2a} ବ୍ୟବହାର କରି ସମାଧାନ କରାଯାଇପାରିବ. କ୍ୱାଡ୍ରାଟିକ୍‌ ସୂତ୍ର ଦୁଇଟି ସମାଧାନ ପ୍ରଦାନ କରିଥାଏ, ଗୋଟିଏ ଯେତେବେଳେ ± ଯୋଗ ହୋଇଥାଏ ଏବଂ ଅନ୍ୟଟି ଯେତେବେଳେ ଏହା ବିୟୋଗ ହୋଇଥାଏ.
x=\frac{-\left(-2\sqrt{3}\right)±\sqrt{\left(-2\sqrt{3}\right)^{2}-4\times 8}}{2}
ଏହି ସମୀକରଣ ମାନାଙ୍କ ଆକାରରେ ରହିଛି: ax^{2}+bx+c=0. \frac{-b±\sqrt{b^{2}-4ac}}{2a} କ୍ୱାଡ୍ରାଟିକ୍‌ ସୂତ୍ରରେ, a ପାଇଁ 1, b ପାଇଁ -2\sqrt{3}, ଏବଂ c ପାଇଁ 8 ପ୍ରତିବଦଳ କରନ୍ତୁ.
x=\frac{-\left(-2\sqrt{3}\right)±\sqrt{12-4\times 8}}{2}
ବର୍ଗ -2\sqrt{3}.
x=\frac{-\left(-2\sqrt{3}\right)±\sqrt{12-32}}{2}
-4 କୁ 8 ଥର ଗୁଣନ କରନ୍ତୁ.
x=\frac{-\left(-2\sqrt{3}\right)±\sqrt{-20}}{2}
12 କୁ -32 ସହ ଯୋଡନ୍ତୁ.
x=\frac{-\left(-2\sqrt{3}\right)±2\sqrt{5}i}{2}
-20 ର ବର୍ଗମୂଳ ବାହାର କରନ୍ତୁ.
x=\frac{2\sqrt{3}±2\sqrt{5}i}{2}
-2\sqrt{3} ର ବିପରୀତ ହେଉଛି 2\sqrt{3}.
x=\frac{2\sqrt{3}+2\sqrt{5}i}{2}
ବର୍ତ୍ତମାନ ସମୀକରଣ x=\frac{2\sqrt{3}±2\sqrt{5}i}{2} ସମାଧାନ କରନ୍ତୁ ଯେତେବେଳେ ± ଯୁକ୍ତ ଅଟେ. 2\sqrt{3} କୁ 2i\sqrt{5} ସହ ଯୋଡନ୍ତୁ.
x=\sqrt{3}+\sqrt{5}i
2\sqrt{3}+2i\sqrt{5} କୁ 2 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x=\frac{-2\sqrt{5}i+2\sqrt{3}}{2}
ବର୍ତ୍ତମାନ ସମୀକରଣ x=\frac{2\sqrt{3}±2\sqrt{5}i}{2} ସମାଧାନ କରନ୍ତୁ ଯେତେବେଳେ ± ବିଯୁକ୍ତ ଅଟେ. 2\sqrt{3} ରୁ 2i\sqrt{5} ବିୟୋଗ କରନ୍ତୁ.
x=-\sqrt{5}i+\sqrt{3}
2\sqrt{3}-2i\sqrt{5} କୁ 2 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x=\sqrt{3}+\sqrt{5}i x=-\sqrt{5}i+\sqrt{3}
ବର୍ତ୍ତମାନ ସମୀକରଣ ସମାଧାନ ହୋଇଛି.
x^{2}+\left(-2\sqrt{3}\right)x+8=0
କ୍ୱାଡ୍ରାଟିକ୍‌ ସମୀକରଣଗୁଡିକ ଯେପରିକି ଏହି ଗୋଟିଏ ବର୍ଗ ବାହାର କରିବା ସମ୍ପୂର୍ଣ୍ଣ କରିବା ଦ୍ୱାରା ସମାଧାନ କରାଯାଇପାରିବ. ବର୍ଗ ବାହାର କରିବା ସମ୍ପୂର୍ଣ୍ଣ କରିବା ପାଇଁ, ସମୀକରଣ ପ୍ରଥମେ x^{2}+bx=c ପ୍ରକାରେ ହେବା ଆବଶ୍ୟକ.
x^{2}+\left(-2\sqrt{3}\right)x+8-8=-8
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱରୁ 8 ବିୟୋଗ କରନ୍ତୁ.
x^{2}+\left(-2\sqrt{3}\right)x=-8
ସଂପୃକ୍ତ ସଂଖ୍ୟାରୁ ସେହି 8 ବିୟୋଗ କରିବାରେ 0 ମିଳିଥାଏ.
x^{2}+\left(-2\sqrt{3}\right)x+\left(-\sqrt{3}\right)^{2}=-8+\left(-\sqrt{3}\right)^{2}
-\sqrt{3} ପ୍ରାପ୍ତ କରିବା ପାଇଁ, x ଟର୍ମ୍‌‌ର ଗୁଣାଙ୍କ, -2\sqrt{3} କୁ, 2 ଦ୍ୱାରା ବିଭକ୍ତ କରନ୍ତୁ. ତାପରେ ସମୀକରଣ ଉଭୟ ପାର୍ଶ୍ୱରେ -\sqrt{3} ର ବର୍ଗ ଯୋଡନ୍ତୁ. ଏହି ପଦକ୍ଷେପ ସମୀକରଣର ବାମ ହାତ ପାର୍ଶ୍ୱକୁ ଏକ ଯଥାର୍ଥ ବର୍ଗରେ ପରିଣତ କରିଥାଏ.
x^{2}+\left(-2\sqrt{3}\right)x+3=-8+3
ବର୍ଗ -\sqrt{3}.
x^{2}+\left(-2\sqrt{3}\right)x+3=-5
-8 କୁ 3 ସହ ଯୋଡନ୍ତୁ.
\left(x-\sqrt{3}\right)^{2}=-5
ଗୁଣନୀୟକ x^{2}+\left(-2\sqrt{3}\right)x+3. ସାଧାରଣତଃ, ଯେତେବେଳେ x^{2}+bx+c ଏକ ପୂର୍ଣ୍ଣ ବର୍ଗ ଅଟେ, ଏହାକୁ ସର୍ବଦା \left(x+\frac{b}{2}\right)^{2} ଭାବେ ଗୁଣନୀୟକ କରାଯାଇପାରିବ.
\sqrt{\left(x-\sqrt{3}\right)^{2}}=\sqrt{-5}
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱର ବର୍ଗମୂଳ ନିଅନ୍ତୁ.
x-\sqrt{3}=\sqrt{5}i x-\sqrt{3}=-\sqrt{5}i
ସରଳୀକୃତ କରିବା.
x=\sqrt{3}+\sqrt{5}i x=-\sqrt{5}i+\sqrt{3}
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱରେ \sqrt{3} ଯୋଡନ୍ତୁ.