x ପାଇଁ ସମାଧାନ କରନ୍ତୁ
x=-\frac{1}{4}=-0.25
x=3
ଗ୍ରାଫ୍
ଅଂଶୀଦାର
କ୍ଲିପ୍ ବୋର୍ଡ଼ରେ ନକଲ କରାଯାଇଛି
4x^{2}-8=11x-5
ସମୀକରଣ ଉଭୟ ପାର୍ଶ୍ୱକୁ 4 ଦ୍ୱାରା ଗୁଣନ କରନ୍ତୁ.
4x^{2}-8-11x=-5
ଉଭୟ ପାର୍ଶ୍ୱରୁ 11x ବିୟୋଗ କରନ୍ତୁ.
4x^{2}-8-11x+5=0
ଉଭୟ ପାର୍ଶ୍ଵକୁ 5 ଯୋଡନ୍ତୁ.
4x^{2}-3-11x=0
-3 ପ୍ରାପ୍ତ କରିବାକୁ -8 ଏବଂ 5 ଯୋଗ କରନ୍ତୁ.
4x^{2}-11x-3=0
ଏହାକୁ ଏକ ମାନାଙ୍କ ରୂପେରେ ରଖିବା ପାଇଁ ପଲିନୋମିଆଲକୁ ପୁନଃବ୍ୟବସ୍ଥିତ କରନ୍ତୁ. ବଡରୁ ସାନ ପାୱାର୍ କ୍ରମରେ ପଦଗୁଡିକୁ ରଖନ୍ତୁ.
a+b=-11 ab=4\left(-3\right)=-12
ସମୀକରଣ ସମାଧାନ କରିବାକୁ, ଗୋଷ୍ଠୀଭୁକ୍ତ କରଣ କରିବା ଦ୍ୱାରା ବାମ ହାତ ପାର୍ଶ୍ୱର ଫ୍ୟାକ୍ଟର୍ ବାହାର କରନ୍ତୁ. ପ୍ରଥମେ, ବାମ ହାତ ପାର୍ଶ୍ୱ 4x^{2}+ax+bx-3 ଭାବେ ପୁନଃ ଲେଖାଯିବା ଆବଶ୍ୟକ. a ଏବଂ b ନିର୍ଣ୍ଣୟ କରିବାକୁ, ସମାଧାନ କରିବାକୁ ଏକ ସିଷ୍ଟମ୍ ସେଟ୍ ଅପ୍ କରନ୍ତୁ.
1,-12 2,-6 3,-4
ଯେହେତୁ ab ଋଣାତ୍ମକ ଅଟେ, ଉଭୟ a ଏବଂ b ର ବିପରୀତ ଚିହ୍ନ ରହିଥାଏ. ଯେହେତୁ a+b ଋଣାତ୍ମକ ଅଟେ, ଋଣାତ୍ମକ ସଂଖ୍ୟା ଧନାତ୍ମକ ସଂଖ୍ୟା ଠାରୁ ବଡ ଆବସଲ୍ୟୁଟ୍ ମୂଲ୍ୟ ରହିଥାଏ. ଏହିଭଳି ସମସ୍ତ ଇଣ୍ଟିଜର୍ ଯୋଡାର ତାଲିକା ପ୍ରସ୍ତୁତ କରନ୍ତୁ ଯାହା ଉତ୍ପାଦ -12 ପ୍ରଦାନ କରିଥାଏ.
1-12=-11 2-6=-4 3-4=-1
ପ୍ରତି ଯୋଡା ପାଇଁ ସମଷ୍ଟି ହିସାବ କରନ୍ତୁ.
a=-12 b=1
ସମାଧାନଟି ହେଉଛି ସେହି ଯୋଡା ଯାହା ସମଷ୍ଟି -11 ପ୍ରଦାନ କରିଥାଏ.
\left(4x^{2}-12x\right)+\left(x-3\right)
\left(4x^{2}-12x\right)+\left(x-3\right) ଭାବରେ 4x^{2}-11x-3 ପୁନଃ ଲେଖନ୍ତୁ.
4x\left(x-3\right)+x-3
4x^{2}-12xରେ 4x ଗୁଣନିୟକ ବାହାର କରନ୍ତୁ.
\left(x-3\right)\left(4x+1\right)
ଡିଷ୍ଟ୍ରିବ୍ୟୁଟିଭ୍ ପ୍ରପର୍ଟି (ବିତରଣ ବୈଶିଷ୍ଟ୍ୟ) ବ୍ୟବହାର କରି ସାଧାରଣ ପଦ x-3 ଗୁଣନିୟକ ବାହାର କରନ୍ତୁ.
x=3 x=-\frac{1}{4}
ସମୀକରଣ ସମାଧାନଗୁଡିକ ନିର୍ଣ୍ଣୟ କରିବାକୁ, x-3=0 ଏବଂ 4x+1=0 ସମାଧାନ କରନ୍ତୁ.
4x^{2}-8=11x-5
ସମୀକରଣ ଉଭୟ ପାର୍ଶ୍ୱକୁ 4 ଦ୍ୱାରା ଗୁଣନ କରନ୍ତୁ.
4x^{2}-8-11x=-5
ଉଭୟ ପାର୍ଶ୍ୱରୁ 11x ବିୟୋଗ କରନ୍ତୁ.
4x^{2}-8-11x+5=0
ଉଭୟ ପାର୍ଶ୍ଵକୁ 5 ଯୋଡନ୍ତୁ.
4x^{2}-3-11x=0
-3 ପ୍ରାପ୍ତ କରିବାକୁ -8 ଏବଂ 5 ଯୋଗ କରନ୍ତୁ.
4x^{2}-11x-3=0
ଏହି ପ୍ରଣାଳୀର ax^{2}+bx+c=0 ସମସ୍ତ ସମୀକରଣଗୁଡିକ କ୍ୱାଡ୍ରାଟିକ୍ ସୂତ୍ର: \frac{-b±\sqrt{b^{2}-4ac}}{2a} ବ୍ୟବହାର କରି ସମାଧାନ କରାଯାଇପାରିବ. କ୍ୱାଡ୍ରାଟିକ୍ ସୂତ୍ର ଦୁଇଟି ସମାଧାନ ପ୍ରଦାନ କରିଥାଏ, ଗୋଟିଏ ଯେତେବେଳେ ± ଯୋଗ ହୋଇଥାଏ ଏବଂ ଅନ୍ୟଟି ଯେତେବେଳେ ଏହା ବିୟୋଗ ହୋଇଥାଏ.
x=\frac{-\left(-11\right)±\sqrt{\left(-11\right)^{2}-4\times 4\left(-3\right)}}{2\times 4}
ଏହି ସମୀକରଣ ମାନାଙ୍କ ଆକାରରେ ରହିଛି: ax^{2}+bx+c=0. \frac{-b±\sqrt{b^{2}-4ac}}{2a} କ୍ୱାଡ୍ରାଟିକ୍ ସୂତ୍ରରେ, a ପାଇଁ 4, b ପାଇଁ -11, ଏବଂ c ପାଇଁ -3 ପ୍ରତିବଦଳ କରନ୍ତୁ.
x=\frac{-\left(-11\right)±\sqrt{121-4\times 4\left(-3\right)}}{2\times 4}
ବର୍ଗ -11.
x=\frac{-\left(-11\right)±\sqrt{121-16\left(-3\right)}}{2\times 4}
-4 କୁ 4 ଥର ଗୁଣନ କରନ୍ତୁ.
x=\frac{-\left(-11\right)±\sqrt{121+48}}{2\times 4}
-16 କୁ -3 ଥର ଗୁଣନ କରନ୍ତୁ.
x=\frac{-\left(-11\right)±\sqrt{169}}{2\times 4}
121 କୁ 48 ସହ ଯୋଡନ୍ତୁ.
x=\frac{-\left(-11\right)±13}{2\times 4}
169 ର ବର୍ଗମୂଳ ବାହାର କରନ୍ତୁ.
x=\frac{11±13}{2\times 4}
-11 ର ବିପରୀତ ହେଉଛି 11.
x=\frac{11±13}{8}
2 କୁ 4 ଥର ଗୁଣନ କରନ୍ତୁ.
x=\frac{24}{8}
ବର୍ତ୍ତମାନ ସମୀକରଣ x=\frac{11±13}{8} ସମାଧାନ କରନ୍ତୁ ଯେତେବେଳେ ± ଯୁକ୍ତ ଅଟେ. 11 କୁ 13 ସହ ଯୋଡନ୍ତୁ.
x=3
24 କୁ 8 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x=-\frac{2}{8}
ବର୍ତ୍ତମାନ ସମୀକରଣ x=\frac{11±13}{8} ସମାଧାନ କରନ୍ତୁ ଯେତେବେଳେ ± ବିଯୁକ୍ତ ଅଟେ. 11 ରୁ 13 ବିୟୋଗ କରନ୍ତୁ.
x=-\frac{1}{4}
2 ବାହାର କରିବା ଏବଂ ବାତିଲ୍ କରିବା ଦ୍ୱାରା ନିମ୍ନତମ ପଦରେ ଅନ୍ତରାଳ \frac{-2}{8} ହ୍ରାସ କରନ୍ତୁ.
x=3 x=-\frac{1}{4}
ବର୍ତ୍ତମାନ ସମୀକରଣ ସମାଧାନ ହୋଇଛି.
4x^{2}-8=11x-5
ସମୀକରଣ ଉଭୟ ପାର୍ଶ୍ୱକୁ 4 ଦ୍ୱାରା ଗୁଣନ କରନ୍ତୁ.
4x^{2}-8-11x=-5
ଉଭୟ ପାର୍ଶ୍ୱରୁ 11x ବିୟୋଗ କରନ୍ତୁ.
4x^{2}-11x=-5+8
ଉଭୟ ପାର୍ଶ୍ଵକୁ 8 ଯୋଡନ୍ତୁ.
4x^{2}-11x=3
3 ପ୍ରାପ୍ତ କରିବାକୁ -5 ଏବଂ 8 ଯୋଗ କରନ୍ତୁ.
\frac{4x^{2}-11x}{4}=\frac{3}{4}
ଉଭୟ ପାର୍ଶ୍ୱକୁ 4 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x^{2}-\frac{11}{4}x=\frac{3}{4}
4 ଦ୍ୱାରା ବିଭାଜନ କରିବା 4 ଦ୍ୱାରା ଗୁଣନକୁ ପୂର୍ବବତ୍ କରିଥାଏ.
x^{2}-\frac{11}{4}x+\left(-\frac{11}{8}\right)^{2}=\frac{3}{4}+\left(-\frac{11}{8}\right)^{2}
-\frac{11}{8} ପ୍ରାପ୍ତ କରିବା ପାଇଁ, x ଟର୍ମ୍ର ଗୁଣାଙ୍କ, -\frac{11}{4} କୁ, 2 ଦ୍ୱାରା ବିଭକ୍ତ କରନ୍ତୁ. ତାପରେ ସମୀକରଣ ଉଭୟ ପାର୍ଶ୍ୱରେ -\frac{11}{8} ର ବର୍ଗ ଯୋଡନ୍ତୁ. ଏହି ପଦକ୍ଷେପ ସମୀକରଣର ବାମ ହାତ ପାର୍ଶ୍ୱକୁ ଏକ ଯଥାର୍ଥ ବର୍ଗରେ ପରିଣତ କରିଥାଏ.
x^{2}-\frac{11}{4}x+\frac{121}{64}=\frac{3}{4}+\frac{121}{64}
ଭଗ୍ନାଂଶର ଉଭୟ ଲବ ଓ ହରର ବର୍ଗ ବାହାର କରିବା ଦ୍ୱାରା -\frac{11}{8} ବର୍ଗ ବାହାର କରନ୍ତୁ.
x^{2}-\frac{11}{4}x+\frac{121}{64}=\frac{169}{64}
ଏକ ସାଧାରଣ ହର ବାହାର କରିବା ସହିତ ଲବଗୁଡିକ ଯୋଗ କରିବା ଦ୍ୱାରା \frac{121}{64} ସହିତ \frac{3}{4} ଯୋଡନ୍ତୁ. ତାପରେ ଭଗ୍ନାଂଶକୁ ସର୍ବନିମ୍ନ ପଦକୁ ହ୍ରାସ କରନ୍ତୁ ଯଦି ସମ୍ଭବ ହୁଏ.
\left(x-\frac{11}{8}\right)^{2}=\frac{169}{64}
ଗୁଣନୀୟକ x^{2}-\frac{11}{4}x+\frac{121}{64}. ସାଧାରଣତଃ, ଯେତେବେଳେ x^{2}+bx+c ଏକ ପୂର୍ଣ୍ଣ ବର୍ଗ ଅଟେ, ଏହାକୁ ସର୍ବଦା \left(x+\frac{b}{2}\right)^{2} ଭାବେ ଗୁଣନୀୟକ କରାଯାଇପାରିବ.
\sqrt{\left(x-\frac{11}{8}\right)^{2}}=\sqrt{\frac{169}{64}}
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱର ବର୍ଗମୂଳ ନିଅନ୍ତୁ.
x-\frac{11}{8}=\frac{13}{8} x-\frac{11}{8}=-\frac{13}{8}
ସରଳୀକୃତ କରିବା.
x=3 x=-\frac{1}{4}
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱରେ \frac{11}{8} ଯୋଡନ୍ତୁ.
ଉଦାହରଣଗୁଡ଼ିକ
ଚତୁଷ୍ପଦୀ ସମୀକରଣ
{ x } ^ { 2 } - 4 x - 5 = 0
ତ୍ରିକୋଣମିତି
4 \sin \theta \cos \theta = 2 \sin \theta
ରୈଖିକ ସମୀକରଣ
y = 3x + 4
ବୀଜଗଣିତ
699 * 533
ମାଟ୍ରିକ୍ସ୍
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ସମକାଳୀନ ସମୀକରଣ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ବିଭେଦୀକରଣ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ଇଣ୍ଟିଗ୍ରେସନ୍
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ସୀମାଗୁଡ଼ିକ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}