ମୁଖ୍ୟ ବିଷୟବସ୍ତୁକୁ ଛାଡି ଦିଅନ୍ତୁ
ଗୁଣକ
Tick mark Image
ମୂଲ୍ୟାୟନ କରିବା
Tick mark Image
ଗ୍ରାଫ୍

ୱେବ୍ ସନ୍ଧାନରୁ ସମାନ ପ୍ରକାରର ସମସ୍ୟା

ଅଂଶୀଦାର

a+b=-13 ab=1\times 22=22
ଗୋଷ୍ଠୀଭୁକ୍ତ କରିବା ଦ୍ୱାରା ଅଭିବ୍ୟକ୍ତିର ଫ୍ୟାକ୍ଟର୍‌ ବାହାର କରନ୍ତୁ. ପ୍ରଥମେ, ଅଭିବ୍ୟକ୍ତି x^{2}+ax+bx+22 ଭାବେ ପୁନଃ ଲେଖାଯିବା ଆବଶ୍ୟକ. a ଏବଂ b ନିର୍ଣ୍ଣୟ କରିବାକୁ, ସମାଧାନ କରିବାକୁ ଏକ ସିଷ୍ଟମ୍‌ ସେଟ୍‌ ଅପ୍‌ କରନ୍ତୁ.
-1,-22 -2,-11
ଯେହେତୁ ab ଧନାତ୍ମକ ଅଟେ, a ଏବଂ b ର ସମାନ ଚିହ୍ନ ରହିଥାଏ. ଯେହେତୁa+b ଋଣାତ୍ମକ ଅଟେ, ଉଭୟ a ଏବଂ b ଋଣାତ୍ମକ ଅଟେ. ଏହିଭଳି ସମସ୍ତ ଇଣ୍ଟିଜର୍ ଯୋଡାର ତାଲିକା ପ୍ରସ୍ତୁତ କରନ୍ତୁ ଯାହା ଉତ୍ପାଦ 22 ପ୍ରଦାନ କରିଥାଏ.
-1-22=-23 -2-11=-13
ପ୍ରତି ଯୋଡା ପାଇଁ ସମଷ୍ଟି ହିସାବ କରନ୍ତୁ.
a=-11 b=-2
ସମାଧାନଟି ହେଉଛି ସେହି ଯୋଡା ଯାହା ସମଷ୍ଟି -13 ପ୍ରଦାନ କରିଥାଏ.
\left(x^{2}-11x\right)+\left(-2x+22\right)
\left(x^{2}-11x\right)+\left(-2x+22\right) ଭାବରେ x^{2}-13x+22 ପୁନଃ ଲେଖନ୍ତୁ.
x\left(x-11\right)-2\left(x-11\right)
ପ୍ରଥମଟିରେ x ଏବଂ ଦ୍ୱିତୀୟ ଗୋଷ୍ଠୀରେ -2 ର ଗୁଣନିୟକ ବାହାର କରନ୍ତୁ.
\left(x-11\right)\left(x-2\right)
ଡିଷ୍ଟ୍ରିବ୍ୟୁଟିଭ୍ ପ୍ରପର୍ଟି (ବିତରଣ ବୈଶିଷ୍ଟ୍ୟ) ବ୍ୟବହାର କରି ସାଧାରଣ ପଦ x-11 ଗୁଣନିୟକ ବାହାର କରନ୍ତୁ.
x^{2}-13x+22=0
ଟ୍ରାନ୍ସଫର୍ମେସନ୍‌ ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right)ବ୍ୟବହାର କରି କ୍ୱାଡ୍ରାଟିକ୍ ପଲିନୋମିଆଲ୍‌‌କୁ ଫ୍ୟାକ୍ଟର୍‌ କରାଯାଇପାରିବ, ଯେଉଁଠାରେ x_{1} ଏବଂ x_{2} ଦ୍ୱିଘାତ ସମୀକରଣ ax^{2}+bx+c=0 ର ସମାଧାନ ଅଟେ.
x=\frac{-\left(-13\right)±\sqrt{\left(-13\right)^{2}-4\times 22}}{2}
ଏହି ପ୍ରଣାଳୀର ax^{2}+bx+c=0 ସମସ୍ତ ସମୀକରଣଗୁଡିକ କ୍ୱାଡ୍ରାଟିକ୍‌ ସୂତ୍ର: \frac{-b±\sqrt{b^{2}-4ac}}{2a} ବ୍ୟବହାର କରି ସମାଧାନ କରାଯାଇପାରିବ. କ୍ୱାଡ୍ରାଟିକ୍‌ ସୂତ୍ର ଦୁଇଟି ସମାଧାନ ପ୍ରଦାନ କରିଥାଏ, ଗୋଟିଏ ଯେତେବେଳେ ± ଯୋଗ ହୋଇଥାଏ ଏବଂ ଅନ୍ୟଟି ଯେତେବେଳେ ଏହା ବିୟୋଗ ହୋଇଥାଏ.
x=\frac{-\left(-13\right)±\sqrt{169-4\times 22}}{2}
ବର୍ଗ -13.
x=\frac{-\left(-13\right)±\sqrt{169-88}}{2}
-4 କୁ 22 ଥର ଗୁଣନ କରନ୍ତୁ.
x=\frac{-\left(-13\right)±\sqrt{81}}{2}
169 କୁ -88 ସହ ଯୋଡନ୍ତୁ.
x=\frac{-\left(-13\right)±9}{2}
81 ର ବର୍ଗମୂଳ ବାହାର କରନ୍ତୁ.
x=\frac{13±9}{2}
-13 ର ବିପରୀତ ହେଉଛି 13.
x=\frac{22}{2}
ବର୍ତ୍ତମାନ ସମୀକରଣ x=\frac{13±9}{2} ସମାଧାନ କରନ୍ତୁ ଯେତେବେଳେ ± ଯୁକ୍ତ ଅଟେ. 13 କୁ 9 ସହ ଯୋଡନ୍ତୁ.
x=11
22 କୁ 2 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x=\frac{4}{2}
ବର୍ତ୍ତମାନ ସମୀକରଣ x=\frac{13±9}{2} ସମାଧାନ କରନ୍ତୁ ଯେତେବେଳେ ± ବିଯୁକ୍ତ ଅଟେ. 13 ରୁ 9 ବିୟୋଗ କରନ୍ତୁ.
x=2
4 କୁ 2 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x^{2}-13x+22=\left(x-11\right)\left(x-2\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) ବ୍ୟବାହର କରି ମୂଳ ଅଭିବ୍ୟକ୍ତିର ଗୁଣକ ନିର୍ଣ୍ଣୟ କରନ୍ତୁ. x_{1} ପାଇଁ 11 ଏବଂ x_{2} ପାଇଁ 2 ପ୍ରତିବଦଳ କରନ୍ତୁ.