ମୁଖ୍ୟ ବିଷୟବସ୍ତୁକୁ ଛାଡି ଦିଅନ୍ତୁ
x ପାଇଁ ସମାଧାନ କରନ୍ତୁ (ଜଟଳି ସମାଧାନ)
Tick mark Image
ଗ୍ରାଫ୍

ୱେବ୍ ସନ୍ଧାନରୁ ସମାନ ପ୍ରକାରର ସମସ୍ୟା

ଅଂଶୀଦାର

x^{2}-12x+480=0
ଏହି ପ୍ରଣାଳୀର ax^{2}+bx+c=0 ସମସ୍ତ ସମୀକରଣଗୁଡିକ କ୍ୱାଡ୍ରାଟିକ୍‌ ସୂତ୍ର: \frac{-b±\sqrt{b^{2}-4ac}}{2a} ବ୍ୟବହାର କରି ସମାଧାନ କରାଯାଇପାରିବ. କ୍ୱାଡ୍ରାଟିକ୍‌ ସୂତ୍ର ଦୁଇଟି ସମାଧାନ ପ୍ରଦାନ କରିଥାଏ, ଗୋଟିଏ ଯେତେବେଳେ ± ଯୋଗ ହୋଇଥାଏ ଏବଂ ଅନ୍ୟଟି ଯେତେବେଳେ ଏହା ବିୟୋଗ ହୋଇଥାଏ.
x=\frac{-\left(-12\right)±\sqrt{\left(-12\right)^{2}-4\times 480}}{2}
ଏହି ସମୀକରଣ ମାନାଙ୍କ ଆକାରରେ ରହିଛି: ax^{2}+bx+c=0. \frac{-b±\sqrt{b^{2}-4ac}}{2a} କ୍ୱାଡ୍ରାଟିକ୍‌ ସୂତ୍ରରେ, a ପାଇଁ 1, b ପାଇଁ -12, ଏବଂ c ପାଇଁ 480 ପ୍ରତିବଦଳ କରନ୍ତୁ.
x=\frac{-\left(-12\right)±\sqrt{144-4\times 480}}{2}
ବର୍ଗ -12.
x=\frac{-\left(-12\right)±\sqrt{144-1920}}{2}
-4 କୁ 480 ଥର ଗୁଣନ କରନ୍ତୁ.
x=\frac{-\left(-12\right)±\sqrt{-1776}}{2}
144 କୁ -1920 ସହ ଯୋଡନ୍ତୁ.
x=\frac{-\left(-12\right)±4\sqrt{111}i}{2}
-1776 ର ବର୍ଗମୂଳ ବାହାର କରନ୍ତୁ.
x=\frac{12±4\sqrt{111}i}{2}
-12 ର ବିପରୀତ ହେଉଛି 12.
x=\frac{12+4\sqrt{111}i}{2}
ବର୍ତ୍ତମାନ ସମୀକରଣ x=\frac{12±4\sqrt{111}i}{2} ସମାଧାନ କରନ୍ତୁ ଯେତେବେଳେ ± ଯୁକ୍ତ ଅଟେ. 12 କୁ 4i\sqrt{111} ସହ ଯୋଡନ୍ତୁ.
x=6+2\sqrt{111}i
12+4i\sqrt{111} କୁ 2 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x=\frac{-4\sqrt{111}i+12}{2}
ବର୍ତ୍ତମାନ ସମୀକରଣ x=\frac{12±4\sqrt{111}i}{2} ସମାଧାନ କରନ୍ତୁ ଯେତେବେଳେ ± ବିଯୁକ୍ତ ଅଟେ. 12 ରୁ 4i\sqrt{111} ବିୟୋଗ କରନ୍ତୁ.
x=-2\sqrt{111}i+6
12-4i\sqrt{111} କୁ 2 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x=6+2\sqrt{111}i x=-2\sqrt{111}i+6
ବର୍ତ୍ତମାନ ସମୀକରଣ ସମାଧାନ ହୋଇଛି.
x^{2}-12x+480=0
କ୍ୱାଡ୍ରାଟିକ୍‌ ସମୀକରଣଗୁଡିକ ଯେପରିକି ଏହି ଗୋଟିଏ ବର୍ଗ ବାହାର କରିବା ସମ୍ପୂର୍ଣ୍ଣ କରିବା ଦ୍ୱାରା ସମାଧାନ କରାଯାଇପାରିବ. ବର୍ଗ ବାହାର କରିବା ସମ୍ପୂର୍ଣ୍ଣ କରିବା ପାଇଁ, ସମୀକରଣ ପ୍ରଥମେ x^{2}+bx=c ପ୍ରକାରେ ହେବା ଆବଶ୍ୟକ.
x^{2}-12x+480-480=-480
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱରୁ 480 ବିୟୋଗ କରନ୍ତୁ.
x^{2}-12x=-480
ସଂପୃକ୍ତ ସଂଖ୍ୟାରୁ ସେହି 480 ବିୟୋଗ କରିବାରେ 0 ମିଳିଥାଏ.
x^{2}-12x+\left(-6\right)^{2}=-480+\left(-6\right)^{2}
-6 ପ୍ରାପ୍ତ କରିବା ପାଇଁ, x ଟର୍ମ୍‌‌ର ଗୁଣାଙ୍କ, -12 କୁ, 2 ଦ୍ୱାରା ବିଭକ୍ତ କରନ୍ତୁ. ତାପରେ ସମୀକରଣ ଉଭୟ ପାର୍ଶ୍ୱରେ -6 ର ବର୍ଗ ଯୋଡନ୍ତୁ. ଏହି ପଦକ୍ଷେପ ସମୀକରଣର ବାମ ହାତ ପାର୍ଶ୍ୱକୁ ଏକ ଯଥାର୍ଥ ବର୍ଗରେ ପରିଣତ କରିଥାଏ.
x^{2}-12x+36=-480+36
ବର୍ଗ -6.
x^{2}-12x+36=-444
-480 କୁ 36 ସହ ଯୋଡନ୍ତୁ.
\left(x-6\right)^{2}=-444
ଗୁଣନୀୟକ x^{2}-12x+36. ସାଧାରଣତଃ, ଯେତେବେଳେ x^{2}+bx+c ଏକ ପୂର୍ଣ୍ଣ ବର୍ଗ ଅଟେ, ଏହାକୁ ସର୍ବଦା \left(x+\frac{b}{2}\right)^{2} ଭାବେ ଗୁଣନୀୟକ କରାଯାଇପାରିବ.
\sqrt{\left(x-6\right)^{2}}=\sqrt{-444}
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱର ବର୍ଗମୂଳ ନିଅନ୍ତୁ.
x-6=2\sqrt{111}i x-6=-2\sqrt{111}i
ସରଳୀକୃତ କରିବା.
x=6+2\sqrt{111}i x=-2\sqrt{111}i+6
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱରେ 6 ଯୋଡନ୍ତୁ.