x ପାଇଁ ସମାଧାନ କରନ୍ତୁ
x=6
ଗ୍ରାଫ୍
ଅଂଶୀଦାର
କ୍ଲିପ୍ ବୋର୍ଡ଼ରେ ନକଲ କରାଯାଇଛି
a+b=-12 ab=36
ସମୀକରଣକୁ ସମାଧାନ କରିବାକୁ, ସୂତ୍ର x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right) ବ୍ୟବହାର କରି x^{2}-12x+36 ର ଫ୍ୟାକ୍ଟର୍ ବାହାର କରନ୍ତୁ. a ଏବଂ b ନିର୍ଣ୍ଣୟ କରିବାକୁ, ସମାଧାନ କରିବାକୁ ଏକ ସିଷ୍ଟମ୍ ସେଟ୍ ଅପ୍ କରନ୍ତୁ.
-1,-36 -2,-18 -3,-12 -4,-9 -6,-6
ଯେହେତୁ ab ଧନାତ୍ମକ ଅଟେ, a ଏବଂ b ର ସମାନ ଚିହ୍ନ ରହିଥାଏ. ଯେହେତୁa+b ଋଣାତ୍ମକ ଅଟେ, ଉଭୟ a ଏବଂ b ଋଣାତ୍ମକ ଅଟେ. ଏହିଭଳି ସମସ୍ତ ଇଣ୍ଟିଜର୍ ଯୋଡାର ତାଲିକା ପ୍ରସ୍ତୁତ କରନ୍ତୁ ଯାହା ଉତ୍ପାଦ 36 ପ୍ରଦାନ କରିଥାଏ.
-1-36=-37 -2-18=-20 -3-12=-15 -4-9=-13 -6-6=-12
ପ୍ରତି ଯୋଡା ପାଇଁ ସମଷ୍ଟି ହିସାବ କରନ୍ତୁ.
a=-6 b=-6
ସମାଧାନଟି ହେଉଛି ସେହି ଯୋଡା ଯାହା ସମଷ୍ଟି -12 ପ୍ରଦାନ କରିଥାଏ.
\left(x-6\right)\left(x-6\right)
ପ୍ରାପ୍ତ ମୂଲ୍ୟଗୁଡିକ ବ୍ୟବହାର କରି ଫ୍ୟାକ୍ଟରଯୁକ୍ତ ଅଭିବ୍ୟକ୍ତି \left(x+a\right)\left(x+b\right) ପୁନଃଲେଖନ୍ତୁ.
\left(x-6\right)^{2}
ବାଇନମିଆଲ୍ ବର୍ଗ ଭାବେ ପୁଣି ଲେଖନ୍ତୁ.
x=6
ସମୀକରଣ ସମାଧାନ ନିର୍ଣ୍ଣୟ କରିବାକୁ, x-6=0 ସମାଧାନ କରନ୍ତୁ.
a+b=-12 ab=1\times 36=36
ସମୀକରଣ ସମାଧାନ କରିବାକୁ, ଗୋଷ୍ଠୀଭୁକ୍ତ କରଣ କରିବା ଦ୍ୱାରା ବାମ ହାତ ପାର୍ଶ୍ୱର ଫ୍ୟାକ୍ଟର୍ ବାହାର କରନ୍ତୁ. ପ୍ରଥମେ, ବାମ ହାତ ପାର୍ଶ୍ୱ x^{2}+ax+bx+36 ଭାବେ ପୁନଃ ଲେଖାଯିବା ଆବଶ୍ୟକ. a ଏବଂ b ନିର୍ଣ୍ଣୟ କରିବାକୁ, ସମାଧାନ କରିବାକୁ ଏକ ସିଷ୍ଟମ୍ ସେଟ୍ ଅପ୍ କରନ୍ତୁ.
-1,-36 -2,-18 -3,-12 -4,-9 -6,-6
ଯେହେତୁ ab ଧନାତ୍ମକ ଅଟେ, a ଏବଂ b ର ସମାନ ଚିହ୍ନ ରହିଥାଏ. ଯେହେତୁa+b ଋଣାତ୍ମକ ଅଟେ, ଉଭୟ a ଏବଂ b ଋଣାତ୍ମକ ଅଟେ. ଏହିଭଳି ସମସ୍ତ ଇଣ୍ଟିଜର୍ ଯୋଡାର ତାଲିକା ପ୍ରସ୍ତୁତ କରନ୍ତୁ ଯାହା ଉତ୍ପାଦ 36 ପ୍ରଦାନ କରିଥାଏ.
-1-36=-37 -2-18=-20 -3-12=-15 -4-9=-13 -6-6=-12
ପ୍ରତି ଯୋଡା ପାଇଁ ସମଷ୍ଟି ହିସାବ କରନ୍ତୁ.
a=-6 b=-6
ସମାଧାନଟି ହେଉଛି ସେହି ଯୋଡା ଯାହା ସମଷ୍ଟି -12 ପ୍ରଦାନ କରିଥାଏ.
\left(x^{2}-6x\right)+\left(-6x+36\right)
\left(x^{2}-6x\right)+\left(-6x+36\right) ଭାବରେ x^{2}-12x+36 ପୁନଃ ଲେଖନ୍ତୁ.
x\left(x-6\right)-6\left(x-6\right)
ପ୍ରଥମଟିରେ x ଏବଂ ଦ୍ୱିତୀୟ ଗୋଷ୍ଠୀରେ -6 ର ଗୁଣନିୟକ ବାହାର କରନ୍ତୁ.
\left(x-6\right)\left(x-6\right)
ଡିଷ୍ଟ୍ରିବ୍ୟୁଟିଭ୍ ପ୍ରପର୍ଟି (ବିତରଣ ବୈଶିଷ୍ଟ୍ୟ) ବ୍ୟବହାର କରି ସାଧାରଣ ପଦ x-6 ଗୁଣନିୟକ ବାହାର କରନ୍ତୁ.
\left(x-6\right)^{2}
ବାଇନମିଆଲ୍ ବର୍ଗ ଭାବେ ପୁଣି ଲେଖନ୍ତୁ.
x=6
ସମୀକରଣ ସମାଧାନ ନିର୍ଣ୍ଣୟ କରିବାକୁ, x-6=0 ସମାଧାନ କରନ୍ତୁ.
x^{2}-12x+36=0
ଏହି ପ୍ରଣାଳୀର ax^{2}+bx+c=0 ସମସ୍ତ ସମୀକରଣଗୁଡିକ କ୍ୱାଡ୍ରାଟିକ୍ ସୂତ୍ର: \frac{-b±\sqrt{b^{2}-4ac}}{2a} ବ୍ୟବହାର କରି ସମାଧାନ କରାଯାଇପାରିବ. କ୍ୱାଡ୍ରାଟିକ୍ ସୂତ୍ର ଦୁଇଟି ସମାଧାନ ପ୍ରଦାନ କରିଥାଏ, ଗୋଟିଏ ଯେତେବେଳେ ± ଯୋଗ ହୋଇଥାଏ ଏବଂ ଅନ୍ୟଟି ଯେତେବେଳେ ଏହା ବିୟୋଗ ହୋଇଥାଏ.
x=\frac{-\left(-12\right)±\sqrt{\left(-12\right)^{2}-4\times 36}}{2}
ଏହି ସମୀକରଣ ମାନାଙ୍କ ଆକାରରେ ରହିଛି: ax^{2}+bx+c=0. \frac{-b±\sqrt{b^{2}-4ac}}{2a} କ୍ୱାଡ୍ରାଟିକ୍ ସୂତ୍ରରେ, a ପାଇଁ 1, b ପାଇଁ -12, ଏବଂ c ପାଇଁ 36 ପ୍ରତିବଦଳ କରନ୍ତୁ.
x=\frac{-\left(-12\right)±\sqrt{144-4\times 36}}{2}
ବର୍ଗ -12.
x=\frac{-\left(-12\right)±\sqrt{144-144}}{2}
-4 କୁ 36 ଥର ଗୁଣନ କରନ୍ତୁ.
x=\frac{-\left(-12\right)±\sqrt{0}}{2}
144 କୁ -144 ସହ ଯୋଡନ୍ତୁ.
x=-\frac{-12}{2}
0 ର ବର୍ଗମୂଳ ବାହାର କରନ୍ତୁ.
x=\frac{12}{2}
-12 ର ବିପରୀତ ହେଉଛି 12.
x=6
12 କୁ 2 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x^{2}-12x+36=0
କ୍ୱାଡ୍ରାଟିକ୍ ସମୀକରଣଗୁଡିକ ଯେପରିକି ଏହି ଗୋଟିଏ ବର୍ଗ ବାହାର କରିବା ସମ୍ପୂର୍ଣ୍ଣ କରିବା ଦ୍ୱାରା ସମାଧାନ କରାଯାଇପାରିବ. ବର୍ଗ ବାହାର କରିବା ସମ୍ପୂର୍ଣ୍ଣ କରିବା ପାଇଁ, ସମୀକରଣ ପ୍ରଥମେ x^{2}+bx=c ପ୍ରକାରେ ହେବା ଆବଶ୍ୟକ.
\left(x-6\right)^{2}=0
ଗୁଣନୀୟକ x^{2}-12x+36. ସାଧାରଣତଃ, ଯେତେବେଳେ x^{2}+bx+c ଏକ ପୂର୍ଣ୍ଣ ବର୍ଗ ଅଟେ, ଏହାକୁ ସର୍ବଦା \left(x+\frac{b}{2}\right)^{2} ଭାବେ ଗୁଣନୀୟକ କରାଯାଇପାରିବ.
\sqrt{\left(x-6\right)^{2}}=\sqrt{0}
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱର ବର୍ଗମୂଳ ନିଅନ୍ତୁ.
x-6=0 x-6=0
ସରଳୀକୃତ କରିବା.
x=6 x=6
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱରେ 6 ଯୋଡନ୍ତୁ.
x=6
ବର୍ତ୍ତମାନ ସମୀକରଣ ସମାଧାନ ହୋଇଛି. ସମାଧାନଗୁଡିକ ସମାନ ଅଛି.
ଉଦାହରଣଗୁଡ଼ିକ
ଚତୁଷ୍ପଦୀ ସମୀକରଣ
{ x } ^ { 2 } - 4 x - 5 = 0
ତ୍ରିକୋଣମିତି
4 \sin \theta \cos \theta = 2 \sin \theta
ରୈଖିକ ସମୀକରଣ
y = 3x + 4
ବୀଜଗଣିତ
699 * 533
ମାଟ୍ରିକ୍ସ୍
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ସମକାଳୀନ ସମୀକରଣ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ବିଭେଦୀକରଣ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ଇଣ୍ଟିଗ୍ରେସନ୍
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ସୀମାଗୁଡ଼ିକ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}