ମୁଖ୍ୟ ବିଷୟବସ୍ତୁକୁ ଛାଡି ଦିଅନ୍ତୁ
x ପାଇଁ ସମାଧାନ କରନ୍ତୁ (ଜଟଳି ସମାଧାନ)
Tick mark Image
ଗ୍ରାଫ୍

ୱେବ୍ ସନ୍ଧାନରୁ ସମାନ ପ୍ରକାରର ସମସ୍ୟା

ଅଂଶୀଦାର

x^{2}-10x+25=-5
ଏହି ପ୍ରଣାଳୀର ax^{2}+bx+c=0 ସମସ୍ତ ସମୀକରଣଗୁଡିକ କ୍ୱାଡ୍ରାଟିକ୍‌ ସୂତ୍ର: \frac{-b±\sqrt{b^{2}-4ac}}{2a} ବ୍ୟବହାର କରି ସମାଧାନ କରାଯାଇପାରିବ. କ୍ୱାଡ୍ରାଟିକ୍‌ ସୂତ୍ର ଦୁଇଟି ସମାଧାନ ପ୍ରଦାନ କରିଥାଏ, ଗୋଟିଏ ଯେତେବେଳେ ± ଯୋଗ ହୋଇଥାଏ ଏବଂ ଅନ୍ୟଟି ଯେତେବେଳେ ଏହା ବିୟୋଗ ହୋଇଥାଏ.
x^{2}-10x+25-\left(-5\right)=-5-\left(-5\right)
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱରେ 5 ଯୋଡନ୍ତୁ.
x^{2}-10x+25-\left(-5\right)=0
ସଂପୃକ୍ତ ସଂଖ୍ୟାରୁ ସେହି -5 ବିୟୋଗ କରିବାରେ 0 ମିଳିଥାଏ.
x^{2}-10x+30=0
25 ରୁ -5 ବିୟୋଗ କରନ୍ତୁ.
x=\frac{-\left(-10\right)±\sqrt{\left(-10\right)^{2}-4\times 30}}{2}
ଏହି ସମୀକରଣ ମାନାଙ୍କ ଆକାରରେ ରହିଛି: ax^{2}+bx+c=0. \frac{-b±\sqrt{b^{2}-4ac}}{2a} କ୍ୱାଡ୍ରାଟିକ୍‌ ସୂତ୍ରରେ, a ପାଇଁ 1, b ପାଇଁ -10, ଏବଂ c ପାଇଁ 30 ପ୍ରତିବଦଳ କରନ୍ତୁ.
x=\frac{-\left(-10\right)±\sqrt{100-4\times 30}}{2}
ବର୍ଗ -10.
x=\frac{-\left(-10\right)±\sqrt{100-120}}{2}
-4 କୁ 30 ଥର ଗୁଣନ କରନ୍ତୁ.
x=\frac{-\left(-10\right)±\sqrt{-20}}{2}
100 କୁ -120 ସହ ଯୋଡନ୍ତୁ.
x=\frac{-\left(-10\right)±2\sqrt{5}i}{2}
-20 ର ବର୍ଗମୂଳ ବାହାର କରନ୍ତୁ.
x=\frac{10±2\sqrt{5}i}{2}
-10 ର ବିପରୀତ ହେଉଛି 10.
x=\frac{10+2\sqrt{5}i}{2}
ବର୍ତ୍ତମାନ ସମୀକରଣ x=\frac{10±2\sqrt{5}i}{2} ସମାଧାନ କରନ୍ତୁ ଯେତେବେଳେ ± ଯୁକ୍ତ ଅଟେ. 10 କୁ 2i\sqrt{5} ସହ ଯୋଡନ୍ତୁ.
x=5+\sqrt{5}i
10+2i\sqrt{5} କୁ 2 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x=\frac{-2\sqrt{5}i+10}{2}
ବର୍ତ୍ତମାନ ସମୀକରଣ x=\frac{10±2\sqrt{5}i}{2} ସମାଧାନ କରନ୍ତୁ ଯେତେବେଳେ ± ବିଯୁକ୍ତ ଅଟେ. 10 ରୁ 2i\sqrt{5} ବିୟୋଗ କରନ୍ତୁ.
x=-\sqrt{5}i+5
10-2i\sqrt{5} କୁ 2 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x=5+\sqrt{5}i x=-\sqrt{5}i+5
ବର୍ତ୍ତମାନ ସମୀକରଣ ସମାଧାନ ହୋଇଛି.
x^{2}-10x+25=-5
କ୍ୱାଡ୍ରାଟିକ୍‌ ସମୀକରଣଗୁଡିକ ଯେପରିକି ଏହି ଗୋଟିଏ ବର୍ଗ ବାହାର କରିବା ସମ୍ପୂର୍ଣ୍ଣ କରିବା ଦ୍ୱାରା ସମାଧାନ କରାଯାଇପାରିବ. ବର୍ଗ ବାହାର କରିବା ସମ୍ପୂର୍ଣ୍ଣ କରିବା ପାଇଁ, ସମୀକରଣ ପ୍ରଥମେ x^{2}+bx=c ପ୍ରକାରେ ହେବା ଆବଶ୍ୟକ.
\left(x-5\right)^{2}=-5
ଗୁଣନୀୟକ x^{2}-10x+25. ସାଧାରଣତଃ, ଯେତେବେଳେ x^{2}+bx+c ଏକ ପୂର୍ଣ୍ଣ ବର୍ଗ ଅଟେ, ଏହାକୁ ସର୍ବଦା \left(x+\frac{b}{2}\right)^{2} ଭାବେ ଗୁଣନୀୟକ କରାଯାଇପାରିବ.
\sqrt{\left(x-5\right)^{2}}=\sqrt{-5}
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱର ବର୍ଗମୂଳ ନିଅନ୍ତୁ.
x-5=\sqrt{5}i x-5=-\sqrt{5}i
ସରଳୀକୃତ କରିବା.
x=5+\sqrt{5}i x=-\sqrt{5}i+5
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱରେ 5 ଯୋଡନ୍ତୁ.