ମୁଖ୍ୟ ବିଷୟବସ୍ତୁକୁ ଛାଡି ଦିଅନ୍ତୁ
x ପାଇଁ ସମାଧାନ କରନ୍ତୁ
Tick mark Image
ଗ୍ରାଫ୍

ୱେବ୍ ସନ୍ଧାନରୁ ସମାନ ପ୍ରକାରର ସମସ୍ୟା

ଅଂଶୀଦାର

x^{2}-\frac{16}{15}x-1=0
ଏହି ପ୍ରଣାଳୀର ax^{2}+bx+c=0 ସମସ୍ତ ସମୀକରଣଗୁଡିକ କ୍ୱାଡ୍ରାଟିକ୍‌ ସୂତ୍ର: \frac{-b±\sqrt{b^{2}-4ac}}{2a} ବ୍ୟବହାର କରି ସମାଧାନ କରାଯାଇପାରିବ. କ୍ୱାଡ୍ରାଟିକ୍‌ ସୂତ୍ର ଦୁଇଟି ସମାଧାନ ପ୍ରଦାନ କରିଥାଏ, ଗୋଟିଏ ଯେତେବେଳେ ± ଯୋଗ ହୋଇଥାଏ ଏବଂ ଅନ୍ୟଟି ଯେତେବେଳେ ଏହା ବିୟୋଗ ହୋଇଥାଏ.
x=\frac{-\left(-\frac{16}{15}\right)±\sqrt{\left(-\frac{16}{15}\right)^{2}-4\left(-1\right)}}{2}
ଏହି ସମୀକରଣ ମାନାଙ୍କ ଆକାରରେ ରହିଛି: ax^{2}+bx+c=0. \frac{-b±\sqrt{b^{2}-4ac}}{2a} କ୍ୱାଡ୍ରାଟିକ୍‌ ସୂତ୍ରରେ, a ପାଇଁ 1, b ପାଇଁ -\frac{16}{15}, ଏବଂ c ପାଇଁ -1 ପ୍ରତିବଦଳ କରନ୍ତୁ.
x=\frac{-\left(-\frac{16}{15}\right)±\sqrt{\frac{256}{225}-4\left(-1\right)}}{2}
ଭଗ୍ନାଂଶର ଉଭୟ ଲବ ଓ ହରର ବର୍ଗ ବାହାର କରିବା ଦ୍ୱାରା -\frac{16}{15} ବର୍ଗ ବାହାର କରନ୍ତୁ.
x=\frac{-\left(-\frac{16}{15}\right)±\sqrt{\frac{256}{225}+4}}{2}
-4 କୁ -1 ଥର ଗୁଣନ କରନ୍ତୁ.
x=\frac{-\left(-\frac{16}{15}\right)±\sqrt{\frac{1156}{225}}}{2}
\frac{256}{225} କୁ 4 ସହ ଯୋଡନ୍ତୁ.
x=\frac{-\left(-\frac{16}{15}\right)±\frac{34}{15}}{2}
\frac{1156}{225} ର ବର୍ଗମୂଳ ବାହାର କରନ୍ତୁ.
x=\frac{\frac{16}{15}±\frac{34}{15}}{2}
-\frac{16}{15} ର ବିପରୀତ ହେଉଛି \frac{16}{15}.
x=\frac{\frac{10}{3}}{2}
ବର୍ତ୍ତମାନ ସମୀକରଣ x=\frac{\frac{16}{15}±\frac{34}{15}}{2} ସମାଧାନ କରନ୍ତୁ ଯେତେବେଳେ ± ଯୁକ୍ତ ଅଟେ. ଏକ ସାଧାରଣ ହର ବାହାର କରିବା ସହିତ ଲବଗୁଡିକ ଯୋଗ କରିବା ଦ୍ୱାରା \frac{34}{15} ସହିତ \frac{16}{15} ଯୋଡନ୍ତୁ. ତାପରେ ଭଗ୍ନାଂଶକୁ ସର୍ବନିମ୍ନ ପଦକୁ ହ୍ରାସ କରନ୍ତୁ ଯଦି ସମ୍ଭବ ହୁଏ.
x=\frac{5}{3}
\frac{10}{3} କୁ 2 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x=-\frac{\frac{6}{5}}{2}
ବର୍ତ୍ତମାନ ସମୀକରଣ x=\frac{\frac{16}{15}±\frac{34}{15}}{2} ସମାଧାନ କରନ୍ତୁ ଯେତେବେଳେ ± ବିଯୁକ୍ତ ଅଟେ. ଏକ ସାଧାରଣ ହର ବାହାର କରିବା ସହିତ ଲବଗୁଡିକ ବିୟୋଗ କରିବା ଦ୍ୱାରା \frac{16}{15} ରୁ \frac{34}{15} ବିୟୋଗ କରନ୍ତୁ. ତାପରେ ଭଗ୍ନାଂଶକୁ ସର୍ବନିମ୍ନ ପଦକୁ ହ୍ରାସ କରନ୍ତୁ ଯଦି ସମ୍ଭବ ହୁଏ.
x=-\frac{3}{5}
-\frac{6}{5} କୁ 2 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x=\frac{5}{3} x=-\frac{3}{5}
ବର୍ତ୍ତମାନ ସମୀକରଣ ସମାଧାନ ହୋଇଛି.
x^{2}-\frac{16}{15}x-1=0
କ୍ୱାଡ୍ରାଟିକ୍‌ ସମୀକରଣଗୁଡିକ ଯେପରିକି ଏହି ଗୋଟିଏ ବର୍ଗ ବାହାର କରିବା ସମ୍ପୂର୍ଣ୍ଣ କରିବା ଦ୍ୱାରା ସମାଧାନ କରାଯାଇପାରିବ. ବର୍ଗ ବାହାର କରିବା ସମ୍ପୂର୍ଣ୍ଣ କରିବା ପାଇଁ, ସମୀକରଣ ପ୍ରଥମେ x^{2}+bx=c ପ୍ରକାରେ ହେବା ଆବଶ୍ୟକ.
x^{2}-\frac{16}{15}x-1-\left(-1\right)=-\left(-1\right)
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱରେ 1 ଯୋଡନ୍ତୁ.
x^{2}-\frac{16}{15}x=-\left(-1\right)
ସଂପୃକ୍ତ ସଂଖ୍ୟାରୁ ସେହି -1 ବିୟୋଗ କରିବାରେ 0 ମିଳିଥାଏ.
x^{2}-\frac{16}{15}x=1
0 ରୁ -1 ବିୟୋଗ କରନ୍ତୁ.
x^{2}-\frac{16}{15}x+\left(-\frac{8}{15}\right)^{2}=1+\left(-\frac{8}{15}\right)^{2}
-\frac{8}{15} ପ୍ରାପ୍ତ କରିବା ପାଇଁ, x ଟର୍ମ୍‌‌ର ଗୁଣାଙ୍କ, -\frac{16}{15} କୁ, 2 ଦ୍ୱାରା ବିଭକ୍ତ କରନ୍ତୁ. ତାପରେ ସମୀକରଣ ଉଭୟ ପାର୍ଶ୍ୱରେ -\frac{8}{15} ର ବର୍ଗ ଯୋଡନ୍ତୁ. ଏହି ପଦକ୍ଷେପ ସମୀକରଣର ବାମ ହାତ ପାର୍ଶ୍ୱକୁ ଏକ ଯଥାର୍ଥ ବର୍ଗରେ ପରିଣତ କରିଥାଏ.
x^{2}-\frac{16}{15}x+\frac{64}{225}=1+\frac{64}{225}
ଭଗ୍ନାଂଶର ଉଭୟ ଲବ ଓ ହରର ବର୍ଗ ବାହାର କରିବା ଦ୍ୱାରା -\frac{8}{15} ବର୍ଗ ବାହାର କରନ୍ତୁ.
x^{2}-\frac{16}{15}x+\frac{64}{225}=\frac{289}{225}
1 କୁ \frac{64}{225} ସହ ଯୋଡନ୍ତୁ.
\left(x-\frac{8}{15}\right)^{2}=\frac{289}{225}
ଗୁଣନୀୟକ x^{2}-\frac{16}{15}x+\frac{64}{225}. ସାଧାରଣତଃ, ଯେତେବେଳେ x^{2}+bx+c ଏକ ପୂର୍ଣ୍ଣ ବର୍ଗ ଅଟେ, ଏହାକୁ ସର୍ବଦା \left(x+\frac{b}{2}\right)^{2} ଭାବେ ଗୁଣନୀୟକ କରାଯାଇପାରିବ.
\sqrt{\left(x-\frac{8}{15}\right)^{2}}=\sqrt{\frac{289}{225}}
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱର ବର୍ଗମୂଳ ନିଅନ୍ତୁ.
x-\frac{8}{15}=\frac{17}{15} x-\frac{8}{15}=-\frac{17}{15}
ସରଳୀକୃତ କରିବା.
x=\frac{5}{3} x=-\frac{3}{5}
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱରେ \frac{8}{15} ଯୋଡନ୍ତୁ.