ମୁଖ୍ୟ ବିଷୟବସ୍ତୁକୁ ଛାଡି ଦିଅନ୍ତୁ
x ପାଇଁ ସମାଧାନ କରନ୍ତୁ
Tick mark Image
ଗ୍ରାଫ୍
କ୍ୱିଜ୍‌
Polynomial

ୱେବ୍ ସନ୍ଧାନରୁ ସମାନ ପ୍ରକାରର ସମସ୍ୟା

ଅଂଶୀଦାର

x^{2}-25x=0
ଉଭୟ ପାର୍ଶ୍ୱରୁ 25x ବିୟୋଗ କରନ୍ତୁ.
x\left(x-25\right)=0
x ର ଗୁଣନିୟକ ବାହାର କରନ୍ତୁ.
x=0 x=25
ସମୀକରଣ ସମାଧାନଗୁଡିକ ନିର୍ଣ୍ଣୟ କରିବାକୁ, x=0 ଏବଂ x-25=0 ସମାଧାନ କରନ୍ତୁ.
x^{2}-25x=0
ଉଭୟ ପାର୍ଶ୍ୱରୁ 25x ବିୟୋଗ କରନ୍ତୁ.
x=\frac{-\left(-25\right)±\sqrt{\left(-25\right)^{2}}}{2}
ଏହି ସମୀକରଣ ମାନାଙ୍କ ଆକାରରେ ରହିଛି: ax^{2}+bx+c=0. \frac{-b±\sqrt{b^{2}-4ac}}{2a} କ୍ୱାଡ୍ରାଟିକ୍‌ ସୂତ୍ରରେ, a ପାଇଁ 1, b ପାଇଁ -25, ଏବଂ c ପାଇଁ 0 ପ୍ରତିବଦଳ କରନ୍ତୁ.
x=\frac{-\left(-25\right)±25}{2}
\left(-25\right)^{2} ର ବର୍ଗମୂଳ ବାହାର କରନ୍ତୁ.
x=\frac{25±25}{2}
-25 ର ବିପରୀତ ହେଉଛି 25.
x=\frac{50}{2}
ବର୍ତ୍ତମାନ ସମୀକରଣ x=\frac{25±25}{2} ସମାଧାନ କରନ୍ତୁ ଯେତେବେଳେ ± ଯୁକ୍ତ ଅଟେ. 25 କୁ 25 ସହ ଯୋଡନ୍ତୁ.
x=25
50 କୁ 2 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x=\frac{0}{2}
ବର୍ତ୍ତମାନ ସମୀକରଣ x=\frac{25±25}{2} ସମାଧାନ କରନ୍ତୁ ଯେତେବେଳେ ± ବିଯୁକ୍ତ ଅଟେ. 25 ରୁ 25 ବିୟୋଗ କରନ୍ତୁ.
x=0
0 କୁ 2 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x=25 x=0
ବର୍ତ୍ତମାନ ସମୀକରଣ ସମାଧାନ ହୋଇଛି.
x^{2}-25x=0
ଉଭୟ ପାର୍ଶ୍ୱରୁ 25x ବିୟୋଗ କରନ୍ତୁ.
x^{2}-25x+\left(-\frac{25}{2}\right)^{2}=\left(-\frac{25}{2}\right)^{2}
-\frac{25}{2} ପ୍ରାପ୍ତ କରିବା ପାଇଁ, x ଟର୍ମ୍‌‌ର ଗୁଣାଙ୍କ, -25 କୁ, 2 ଦ୍ୱାରା ବିଭକ୍ତ କରନ୍ତୁ. ତାପରେ ସମୀକରଣ ଉଭୟ ପାର୍ଶ୍ୱରେ -\frac{25}{2} ର ବର୍ଗ ଯୋଡନ୍ତୁ. ଏହି ପଦକ୍ଷେପ ସମୀକରଣର ବାମ ହାତ ପାର୍ଶ୍ୱକୁ ଏକ ଯଥାର୍ଥ ବର୍ଗରେ ପରିଣତ କରିଥାଏ.
x^{2}-25x+\frac{625}{4}=\frac{625}{4}
ଭଗ୍ନାଂଶର ଉଭୟ ଲବ ଓ ହରର ବର୍ଗ ବାହାର କରିବା ଦ୍ୱାରା -\frac{25}{2} ବର୍ଗ ବାହାର କରନ୍ତୁ.
\left(x-\frac{25}{2}\right)^{2}=\frac{625}{4}
ଗୁଣନୀୟକ x^{2}-25x+\frac{625}{4}. ସାଧାରଣତଃ, ଯେତେବେଳେ x^{2}+bx+c ଏକ ପୂର୍ଣ୍ଣ ବର୍ଗ ଅଟେ, ଏହାକୁ ସର୍ବଦା \left(x+\frac{b}{2}\right)^{2} ଭାବେ ଗୁଣନୀୟକ କରାଯାଇପାରିବ.
\sqrt{\left(x-\frac{25}{2}\right)^{2}}=\sqrt{\frac{625}{4}}
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱର ବର୍ଗମୂଳ ନିଅନ୍ତୁ.
x-\frac{25}{2}=\frac{25}{2} x-\frac{25}{2}=-\frac{25}{2}
ସରଳୀକୃତ କରିବା.
x=25 x=0
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱରେ \frac{25}{2} ଯୋଡନ୍ତୁ.