ମୁଖ୍ୟ ବିଷୟବସ୍ତୁକୁ ଛାଡି ଦିଅନ୍ତୁ
x ପାଇଁ ସମାଧାନ କରନ୍ତୁ
Tick mark Image
ଗ୍ରାଫ୍

ୱେବ୍ ସନ୍ଧାନରୁ ସମାନ ପ୍ରକାରର ସମସ୍ୟା

ଅଂଶୀଦାର

x^{2}-\frac{1}{3}x=2
ଉଭୟ ପାର୍ଶ୍ୱରୁ \frac{1}{3}x ବିୟୋଗ କରନ୍ତୁ.
x^{2}-\frac{1}{3}x-2=0
ଉଭୟ ପାର୍ଶ୍ୱରୁ 2 ବିୟୋଗ କରନ୍ତୁ.
x=\frac{-\left(-\frac{1}{3}\right)±\sqrt{\left(-\frac{1}{3}\right)^{2}-4\left(-2\right)}}{2}
ଏହି ସମୀକରଣ ମାନାଙ୍କ ଆକାରରେ ରହିଛି: ax^{2}+bx+c=0. \frac{-b±\sqrt{b^{2}-4ac}}{2a} କ୍ୱାଡ୍ରାଟିକ୍‌ ସୂତ୍ରରେ, a ପାଇଁ 1, b ପାଇଁ -\frac{1}{3}, ଏବଂ c ପାଇଁ -2 ପ୍ରତିବଦଳ କରନ୍ତୁ.
x=\frac{-\left(-\frac{1}{3}\right)±\sqrt{\frac{1}{9}-4\left(-2\right)}}{2}
ଭଗ୍ନାଂଶର ଉଭୟ ଲବ ଓ ହରର ବର୍ଗ ବାହାର କରିବା ଦ୍ୱାରା -\frac{1}{3} ବର୍ଗ ବାହାର କରନ୍ତୁ.
x=\frac{-\left(-\frac{1}{3}\right)±\sqrt{\frac{1}{9}+8}}{2}
-4 କୁ -2 ଥର ଗୁଣନ କରନ୍ତୁ.
x=\frac{-\left(-\frac{1}{3}\right)±\sqrt{\frac{73}{9}}}{2}
\frac{1}{9} କୁ 8 ସହ ଯୋଡନ୍ତୁ.
x=\frac{-\left(-\frac{1}{3}\right)±\frac{\sqrt{73}}{3}}{2}
\frac{73}{9} ର ବର୍ଗମୂଳ ବାହାର କରନ୍ତୁ.
x=\frac{\frac{1}{3}±\frac{\sqrt{73}}{3}}{2}
-\frac{1}{3} ର ବିପରୀତ ହେଉଛି \frac{1}{3}.
x=\frac{\sqrt{73}+1}{2\times 3}
ବର୍ତ୍ତମାନ ସମୀକରଣ x=\frac{\frac{1}{3}±\frac{\sqrt{73}}{3}}{2} ସମାଧାନ କରନ୍ତୁ ଯେତେବେଳେ ± ଯୁକ୍ତ ଅଟେ. \frac{1}{3} କୁ \frac{\sqrt{73}}{3} ସହ ଯୋଡନ୍ତୁ.
x=\frac{\sqrt{73}+1}{6}
\frac{1+\sqrt{73}}{3} କୁ 2 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x=\frac{1-\sqrt{73}}{2\times 3}
ବର୍ତ୍ତମାନ ସମୀକରଣ x=\frac{\frac{1}{3}±\frac{\sqrt{73}}{3}}{2} ସମାଧାନ କରନ୍ତୁ ଯେତେବେଳେ ± ବିଯୁକ୍ତ ଅଟେ. \frac{1}{3} ରୁ \frac{\sqrt{73}}{3} ବିୟୋଗ କରନ୍ତୁ.
x=\frac{1-\sqrt{73}}{6}
\frac{1-\sqrt{73}}{3} କୁ 2 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x=\frac{\sqrt{73}+1}{6} x=\frac{1-\sqrt{73}}{6}
ବର୍ତ୍ତମାନ ସମୀକରଣ ସମାଧାନ ହୋଇଛି.
x^{2}-\frac{1}{3}x=2
ଉଭୟ ପାର୍ଶ୍ୱରୁ \frac{1}{3}x ବିୟୋଗ କରନ୍ତୁ.
x^{2}-\frac{1}{3}x+\left(-\frac{1}{6}\right)^{2}=2+\left(-\frac{1}{6}\right)^{2}
-\frac{1}{6} ପ୍ରାପ୍ତ କରିବା ପାଇଁ, x ଟର୍ମ୍‌‌ର ଗୁଣାଙ୍କ, -\frac{1}{3} କୁ, 2 ଦ୍ୱାରା ବିଭକ୍ତ କରନ୍ତୁ. ତାପରେ ସମୀକରଣ ଉଭୟ ପାର୍ଶ୍ୱରେ -\frac{1}{6} ର ବର୍ଗ ଯୋଡନ୍ତୁ. ଏହି ପଦକ୍ଷେପ ସମୀକରଣର ବାମ ହାତ ପାର୍ଶ୍ୱକୁ ଏକ ଯଥାର୍ଥ ବର୍ଗରେ ପରିଣତ କରିଥାଏ.
x^{2}-\frac{1}{3}x+\frac{1}{36}=2+\frac{1}{36}
ଭଗ୍ନାଂଶର ଉଭୟ ଲବ ଓ ହରର ବର୍ଗ ବାହାର କରିବା ଦ୍ୱାରା -\frac{1}{6} ବର୍ଗ ବାହାର କରନ୍ତୁ.
x^{2}-\frac{1}{3}x+\frac{1}{36}=\frac{73}{36}
2 କୁ \frac{1}{36} ସହ ଯୋଡନ୍ତୁ.
\left(x-\frac{1}{6}\right)^{2}=\frac{73}{36}
ଗୁଣନୀୟକ x^{2}-\frac{1}{3}x+\frac{1}{36}. ସାଧାରଣତଃ, ଯେତେବେଳେ x^{2}+bx+c ଏକ ପୂର୍ଣ୍ଣ ବର୍ଗ ଅଟେ, ଏହାକୁ ସର୍ବଦା \left(x+\frac{b}{2}\right)^{2} ଭାବେ ଗୁଣନୀୟକ କରାଯାଇପାରିବ.
\sqrt{\left(x-\frac{1}{6}\right)^{2}}=\sqrt{\frac{73}{36}}
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱର ବର୍ଗମୂଳ ନିଅନ୍ତୁ.
x-\frac{1}{6}=\frac{\sqrt{73}}{6} x-\frac{1}{6}=-\frac{\sqrt{73}}{6}
ସରଳୀକୃତ କରିବା.
x=\frac{\sqrt{73}+1}{6} x=\frac{1-\sqrt{73}}{6}
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱରେ \frac{1}{6} ଯୋଡନ୍ତୁ.