ମୁଖ୍ୟ ବିଷୟବସ୍ତୁକୁ ଛାଡି ଦିଅନ୍ତୁ
x ପାଇଁ ସମାଧାନ କରନ୍ତୁ
Tick mark Image
ଗ୍ରାଫ୍

ୱେବ୍ ସନ୍ଧାନରୁ ସମାନ ପ୍ରକାରର ସମସ୍ୟା

ଅଂଶୀଦାର

2x^{2}-11x-60=0\times 8
2x^{2} ପାଇବାକୁ x^{2} ଏବଂ x^{2} ସମ୍ମେଳନ କରନ୍ତୁ.
2x^{2}-11x-60=0
0 ପ୍ରାପ୍ତ କରିବାକୁ 0 ଏବଂ 8 ଗୁଣନ କରନ୍ତୁ.
x=\frac{-\left(-11\right)±\sqrt{\left(-11\right)^{2}-4\times 2\left(-60\right)}}{2\times 2}
ଏହି ସମୀକରଣ ମାନାଙ୍କ ଆକାରରେ ରହିଛି: ax^{2}+bx+c=0. \frac{-b±\sqrt{b^{2}-4ac}}{2a} କ୍ୱାଡ୍ରାଟିକ୍‌ ସୂତ୍ରରେ, a ପାଇଁ 2, b ପାଇଁ -11, ଏବଂ c ପାଇଁ -60 ପ୍ରତିବଦଳ କରନ୍ତୁ.
x=\frac{-\left(-11\right)±\sqrt{121-4\times 2\left(-60\right)}}{2\times 2}
ବର୍ଗ -11.
x=\frac{-\left(-11\right)±\sqrt{121-8\left(-60\right)}}{2\times 2}
-4 କୁ 2 ଥର ଗୁଣନ କରନ୍ତୁ.
x=\frac{-\left(-11\right)±\sqrt{121+480}}{2\times 2}
-8 କୁ -60 ଥର ଗୁଣନ କରନ୍ତୁ.
x=\frac{-\left(-11\right)±\sqrt{601}}{2\times 2}
121 କୁ 480 ସହ ଯୋଡନ୍ତୁ.
x=\frac{11±\sqrt{601}}{2\times 2}
-11 ର ବିପରୀତ ହେଉଛି 11.
x=\frac{11±\sqrt{601}}{4}
2 କୁ 2 ଥର ଗୁଣନ କରନ୍ତୁ.
x=\frac{\sqrt{601}+11}{4}
ବର୍ତ୍ତମାନ ସମୀକରଣ x=\frac{11±\sqrt{601}}{4} ସମାଧାନ କରନ୍ତୁ ଯେତେବେଳେ ± ଯୁକ୍ତ ଅଟେ. 11 କୁ \sqrt{601} ସହ ଯୋଡନ୍ତୁ.
x=\frac{11-\sqrt{601}}{4}
ବର୍ତ୍ତମାନ ସମୀକରଣ x=\frac{11±\sqrt{601}}{4} ସମାଧାନ କରନ୍ତୁ ଯେତେବେଳେ ± ବିଯୁକ୍ତ ଅଟେ. 11 ରୁ \sqrt{601} ବିୟୋଗ କରନ୍ତୁ.
x=\frac{\sqrt{601}+11}{4} x=\frac{11-\sqrt{601}}{4}
ବର୍ତ୍ତମାନ ସମୀକରଣ ସମାଧାନ ହୋଇଛି.
2x^{2}-11x-60=0\times 8
2x^{2} ପାଇବାକୁ x^{2} ଏବଂ x^{2} ସମ୍ମେଳନ କରନ୍ତୁ.
2x^{2}-11x-60=0
0 ପ୍ରାପ୍ତ କରିବାକୁ 0 ଏବଂ 8 ଗୁଣନ କରନ୍ତୁ.
2x^{2}-11x=60
ଉଭୟ ପାର୍ଶ୍ଵକୁ 60 ଯୋଡନ୍ତୁ. ଯାହାକିଛି ସହିତ ଶୂନ୍ୟ ଯୋଗ ହେଲେ ସେହି ସଂଖ୍ୟା ମିଳିଥାଏ.
\frac{2x^{2}-11x}{2}=\frac{60}{2}
ଉଭୟ ପାର୍ଶ୍ୱକୁ 2 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x^{2}-\frac{11}{2}x=\frac{60}{2}
2 ଦ୍ୱାରା ବିଭାଜନ କରିବା 2 ଦ୍ୱାରା ଗୁଣନକୁ ପୂର୍ବବତ୍‌ କରିଥାଏ.
x^{2}-\frac{11}{2}x=30
60 କୁ 2 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x^{2}-\frac{11}{2}x+\left(-\frac{11}{4}\right)^{2}=30+\left(-\frac{11}{4}\right)^{2}
-\frac{11}{4} ପ୍ରାପ୍ତ କରିବା ପାଇଁ, x ଟର୍ମ୍‌‌ର ଗୁଣାଙ୍କ, -\frac{11}{2} କୁ, 2 ଦ୍ୱାରା ବିଭକ୍ତ କରନ୍ତୁ. ତାପରେ ସମୀକରଣ ଉଭୟ ପାର୍ଶ୍ୱରେ -\frac{11}{4} ର ବର୍ଗ ଯୋଡନ୍ତୁ. ଏହି ପଦକ୍ଷେପ ସମୀକରଣର ବାମ ହାତ ପାର୍ଶ୍ୱକୁ ଏକ ଯଥାର୍ଥ ବର୍ଗରେ ପରିଣତ କରିଥାଏ.
x^{2}-\frac{11}{2}x+\frac{121}{16}=30+\frac{121}{16}
ଭଗ୍ନାଂଶର ଉଭୟ ଲବ ଓ ହରର ବର୍ଗ ବାହାର କରିବା ଦ୍ୱାରା -\frac{11}{4} ବର୍ଗ ବାହାର କରନ୍ତୁ.
x^{2}-\frac{11}{2}x+\frac{121}{16}=\frac{601}{16}
30 କୁ \frac{121}{16} ସହ ଯୋଡନ୍ତୁ.
\left(x-\frac{11}{4}\right)^{2}=\frac{601}{16}
ଗୁଣନୀୟକ x^{2}-\frac{11}{2}x+\frac{121}{16}. ସାଧାରଣତଃ, ଯେତେବେଳେ x^{2}+bx+c ଏକ ପୂର୍ଣ୍ଣ ବର୍ଗ ଅଟେ, ଏହାକୁ ସର୍ବଦା \left(x+\frac{b}{2}\right)^{2} ଭାବେ ଗୁଣନୀୟକ କରାଯାଇପାରିବ.
\sqrt{\left(x-\frac{11}{4}\right)^{2}}=\sqrt{\frac{601}{16}}
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱର ବର୍ଗମୂଳ ନିଅନ୍ତୁ.
x-\frac{11}{4}=\frac{\sqrt{601}}{4} x-\frac{11}{4}=-\frac{\sqrt{601}}{4}
ସରଳୀକୃତ କରିବା.
x=\frac{\sqrt{601}+11}{4} x=\frac{11-\sqrt{601}}{4}
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱରେ \frac{11}{4} ଯୋଡନ୍ତୁ.