ମୁଖ୍ୟ ବିଷୟବସ୍ତୁକୁ ଛାଡି ଦିଅନ୍ତୁ
x ପାଇଁ ସମାଧାନ କରନ୍ତୁ
Tick mark Image
ଗ୍ରାଫ୍

ୱେବ୍ ସନ୍ଧାନରୁ ସମାନ ପ୍ରକାରର ସମସ୍ୟା

ଅଂଶୀଦାର

x^{2}+6x+x=30
ଉଭୟ ପାର୍ଶ୍ଵକୁ x ଯୋଡନ୍ତୁ.
x^{2}+7x=30
7x ପାଇବାକୁ 6x ଏବଂ x ସମ୍ମେଳନ କରନ୍ତୁ.
x^{2}+7x-30=0
ଉଭୟ ପାର୍ଶ୍ୱରୁ 30 ବିୟୋଗ କରନ୍ତୁ.
a+b=7 ab=-30
ସମୀକରଣକୁ ସମାଧାନ କରିବାକୁ, ସୂତ୍ର x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right) ବ୍ୟବହାର କରି x^{2}+7x-30 ର ଫ୍ୟାକ୍ଟର୍‌ ବାହାର କରନ୍ତୁ. a ଏବଂ b ନିର୍ଣ୍ଣୟ କରିବାକୁ, ସମାଧାନ କରିବାକୁ ଏକ ସିଷ୍ଟମ୍‌ ସେଟ୍‌ ଅପ୍‌ କରନ୍ତୁ.
-1,30 -2,15 -3,10 -5,6
ଯେହେତୁ ab ଋଣାତ୍ମକ ଅଟେ, ଉଭୟ a ଏବଂ b ର ବିପରୀତ ଚିହ୍ନ ରହିଥାଏ. ଯେହେତୁ a+b ଧନାତ୍ମକ ଅଟେ, ଧନାତ୍ମକ ସଂଖ୍ୟା ଋଣାତ୍ମକ ସଂଖ୍ୟା ଠାରୁ ବଡ ଆବସଲ୍ୟୁଟ୍‌ ମୂଲ୍ୟ ରହିଥାଏ. ଏହିଭଳି ସମସ୍ତ ଇଣ୍ଟିଜର୍ ଯୋଡାର ତାଲିକା ପ୍ରସ୍ତୁତ କରନ୍ତୁ ଯାହା ଉତ୍ପାଦ -30 ପ୍ରଦାନ କରିଥାଏ.
-1+30=29 -2+15=13 -3+10=7 -5+6=1
ପ୍ରତି ଯୋଡା ପାଇଁ ସମଷ୍ଟି ହିସାବ କରନ୍ତୁ.
a=-3 b=10
ସମାଧାନଟି ହେଉଛି ସେହି ଯୋଡା ଯାହା ସମଷ୍ଟି 7 ପ୍ରଦାନ କରିଥାଏ.
\left(x-3\right)\left(x+10\right)
ପ୍ରାପ୍ତ ମୂଲ୍ୟଗୁଡିକ ବ୍ୟବହାର କରି ଫ୍ୟାକ୍ଟରଯୁକ୍ତ ଅଭିବ୍ୟକ୍ତି \left(x+a\right)\left(x+b\right) ପୁନଃଲେଖନ୍ତୁ.
x=3 x=-10
ସମୀକରଣ ସମାଧାନଗୁଡିକ ନିର୍ଣ୍ଣୟ କରିବାକୁ, x-3=0 ଏବଂ x+10=0 ସମାଧାନ କରନ୍ତୁ.
x^{2}+6x+x=30
ଉଭୟ ପାର୍ଶ୍ଵକୁ x ଯୋଡନ୍ତୁ.
x^{2}+7x=30
7x ପାଇବାକୁ 6x ଏବଂ x ସମ୍ମେଳନ କରନ୍ତୁ.
x^{2}+7x-30=0
ଉଭୟ ପାର୍ଶ୍ୱରୁ 30 ବିୟୋଗ କରନ୍ତୁ.
a+b=7 ab=1\left(-30\right)=-30
ସମୀକରଣ ସମାଧାନ କରିବାକୁ, ଗୋଷ୍ଠୀଭୁକ୍ତ କରଣ କରିବା ଦ୍ୱାରା ବାମ ହାତ ପାର୍ଶ୍ୱର ଫ୍ୟାକ୍ଟର୍‌ ବାହାର କରନ୍ତୁ. ପ୍ରଥମେ, ବାମ ହାତ ପାର୍ଶ୍ୱ x^{2}+ax+bx-30 ଭାବେ ପୁନଃ ଲେଖାଯିବା ଆବଶ୍ୟକ. a ଏବଂ b ନିର୍ଣ୍ଣୟ କରିବାକୁ, ସମାଧାନ କରିବାକୁ ଏକ ସିଷ୍ଟମ୍‌ ସେଟ୍‌ ଅପ୍‌ କରନ୍ତୁ.
-1,30 -2,15 -3,10 -5,6
ଯେହେତୁ ab ଋଣାତ୍ମକ ଅଟେ, ଉଭୟ a ଏବଂ b ର ବିପରୀତ ଚିହ୍ନ ରହିଥାଏ. ଯେହେତୁ a+b ଧନାତ୍ମକ ଅଟେ, ଧନାତ୍ମକ ସଂଖ୍ୟା ଋଣାତ୍ମକ ସଂଖ୍ୟା ଠାରୁ ବଡ ଆବସଲ୍ୟୁଟ୍‌ ମୂଲ୍ୟ ରହିଥାଏ. ଏହିଭଳି ସମସ୍ତ ଇଣ୍ଟିଜର୍ ଯୋଡାର ତାଲିକା ପ୍ରସ୍ତୁତ କରନ୍ତୁ ଯାହା ଉତ୍ପାଦ -30 ପ୍ରଦାନ କରିଥାଏ.
-1+30=29 -2+15=13 -3+10=7 -5+6=1
ପ୍ରତି ଯୋଡା ପାଇଁ ସମଷ୍ଟି ହିସାବ କରନ୍ତୁ.
a=-3 b=10
ସମାଧାନଟି ହେଉଛି ସେହି ଯୋଡା ଯାହା ସମଷ୍ଟି 7 ପ୍ରଦାନ କରିଥାଏ.
\left(x^{2}-3x\right)+\left(10x-30\right)
\left(x^{2}-3x\right)+\left(10x-30\right) ଭାବରେ x^{2}+7x-30 ପୁନଃ ଲେଖନ୍ତୁ.
x\left(x-3\right)+10\left(x-3\right)
ପ୍ରଥମଟିରେ x ଏବଂ ଦ୍ୱିତୀୟ ଗୋଷ୍ଠୀରେ 10 ର ଗୁଣନିୟକ ବାହାର କରନ୍ତୁ.
\left(x-3\right)\left(x+10\right)
ଡିଷ୍ଟ୍ରିବ୍ୟୁଟିଭ୍ ପ୍ରପର୍ଟି (ବିତରଣ ବୈଶିଷ୍ଟ୍ୟ) ବ୍ୟବହାର କରି ସାଧାରଣ ପଦ x-3 ଗୁଣନିୟକ ବାହାର କରନ୍ତୁ.
x=3 x=-10
ସମୀକରଣ ସମାଧାନଗୁଡିକ ନିର୍ଣ୍ଣୟ କରିବାକୁ, x-3=0 ଏବଂ x+10=0 ସମାଧାନ କରନ୍ତୁ.
x^{2}+6x+x=30
ଉଭୟ ପାର୍ଶ୍ଵକୁ x ଯୋଡନ୍ତୁ.
x^{2}+7x=30
7x ପାଇବାକୁ 6x ଏବଂ x ସମ୍ମେଳନ କରନ୍ତୁ.
x^{2}+7x-30=0
ଉଭୟ ପାର୍ଶ୍ୱରୁ 30 ବିୟୋଗ କରନ୍ତୁ.
x=\frac{-7±\sqrt{7^{2}-4\left(-30\right)}}{2}
ଏହି ସମୀକରଣ ମାନାଙ୍କ ଆକାରରେ ରହିଛି: ax^{2}+bx+c=0. \frac{-b±\sqrt{b^{2}-4ac}}{2a} କ୍ୱାଡ୍ରାଟିକ୍‌ ସୂତ୍ରରେ, a ପାଇଁ 1, b ପାଇଁ 7, ଏବଂ c ପାଇଁ -30 ପ୍ରତିବଦଳ କରନ୍ତୁ.
x=\frac{-7±\sqrt{49-4\left(-30\right)}}{2}
ବର୍ଗ 7.
x=\frac{-7±\sqrt{49+120}}{2}
-4 କୁ -30 ଥର ଗୁଣନ କରନ୍ତୁ.
x=\frac{-7±\sqrt{169}}{2}
49 କୁ 120 ସହ ଯୋଡନ୍ତୁ.
x=\frac{-7±13}{2}
169 ର ବର୍ଗମୂଳ ବାହାର କରନ୍ତୁ.
x=\frac{6}{2}
ବର୍ତ୍ତମାନ ସମୀକରଣ x=\frac{-7±13}{2} ସମାଧାନ କରନ୍ତୁ ଯେତେବେଳେ ± ଯୁକ୍ତ ଅଟେ. -7 କୁ 13 ସହ ଯୋଡନ୍ତୁ.
x=3
6 କୁ 2 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x=-\frac{20}{2}
ବର୍ତ୍ତମାନ ସମୀକରଣ x=\frac{-7±13}{2} ସମାଧାନ କରନ୍ତୁ ଯେତେବେଳେ ± ବିଯୁକ୍ତ ଅଟେ. -7 ରୁ 13 ବିୟୋଗ କରନ୍ତୁ.
x=-10
-20 କୁ 2 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x=3 x=-10
ବର୍ତ୍ତମାନ ସମୀକରଣ ସମାଧାନ ହୋଇଛି.
x^{2}+6x+x=30
ଉଭୟ ପାର୍ଶ୍ଵକୁ x ଯୋଡନ୍ତୁ.
x^{2}+7x=30
7x ପାଇବାକୁ 6x ଏବଂ x ସମ୍ମେଳନ କରନ୍ତୁ.
x^{2}+7x+\left(\frac{7}{2}\right)^{2}=30+\left(\frac{7}{2}\right)^{2}
\frac{7}{2} ପ୍ରାପ୍ତ କରିବା ପାଇଁ, x ଟର୍ମ୍‌‌ର ଗୁଣାଙ୍କ, 7 କୁ, 2 ଦ୍ୱାରା ବିଭକ୍ତ କରନ୍ତୁ. ତାପରେ ସମୀକରଣ ଉଭୟ ପାର୍ଶ୍ୱରେ \frac{7}{2} ର ବର୍ଗ ଯୋଡନ୍ତୁ. ଏହି ପଦକ୍ଷେପ ସମୀକରଣର ବାମ ହାତ ପାର୍ଶ୍ୱକୁ ଏକ ଯଥାର୍ଥ ବର୍ଗରେ ପରିଣତ କରିଥାଏ.
x^{2}+7x+\frac{49}{4}=30+\frac{49}{4}
ଭଗ୍ନାଂଶର ଉଭୟ ଲବ ଓ ହରର ବର୍ଗ ବାହାର କରିବା ଦ୍ୱାରା \frac{7}{2} ବର୍ଗ ବାହାର କରନ୍ତୁ.
x^{2}+7x+\frac{49}{4}=\frac{169}{4}
30 କୁ \frac{49}{4} ସହ ଯୋଡନ୍ତୁ.
\left(x+\frac{7}{2}\right)^{2}=\frac{169}{4}
ଗୁଣନୀୟକ x^{2}+7x+\frac{49}{4}. ସାଧାରଣତଃ, ଯେତେବେଳେ x^{2}+bx+c ଏକ ପୂର୍ଣ୍ଣ ବର୍ଗ ଅଟେ, ଏହାକୁ ସର୍ବଦା \left(x+\frac{b}{2}\right)^{2} ଭାବେ ଗୁଣନୀୟକ କରାଯାଇପାରିବ.
\sqrt{\left(x+\frac{7}{2}\right)^{2}}=\sqrt{\frac{169}{4}}
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱର ବର୍ଗମୂଳ ନିଅନ୍ତୁ.
x+\frac{7}{2}=\frac{13}{2} x+\frac{7}{2}=-\frac{13}{2}
ସରଳୀକୃତ କରିବା.
x=3 x=-10
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱରୁ \frac{7}{2} ବିୟୋଗ କରନ୍ତୁ.