ମୁଖ୍ୟ ବିଷୟବସ୍ତୁକୁ ଛାଡି ଦିଅନ୍ତୁ
x ପାଇଁ ସମାଧାନ କରନ୍ତୁ (ଜଟଳି ସମାଧାନ)
Tick mark Image
ଗ୍ରାଫ୍

ୱେବ୍ ସନ୍ଧାନରୁ ସମାନ ପ୍ରକାରର ସମସ୍ୟା

ଅଂଶୀଦାର

x^{2}+6x+37=0
ଏହି ପ୍ରଣାଳୀର ax^{2}+bx+c=0 ସମସ୍ତ ସମୀକରଣଗୁଡିକ କ୍ୱାଡ୍ରାଟିକ୍‌ ସୂତ୍ର: \frac{-b±\sqrt{b^{2}-4ac}}{2a} ବ୍ୟବହାର କରି ସମାଧାନ କରାଯାଇପାରିବ. କ୍ୱାଡ୍ରାଟିକ୍‌ ସୂତ୍ର ଦୁଇଟି ସମାଧାନ ପ୍ରଦାନ କରିଥାଏ, ଗୋଟିଏ ଯେତେବେଳେ ± ଯୋଗ ହୋଇଥାଏ ଏବଂ ଅନ୍ୟଟି ଯେତେବେଳେ ଏହା ବିୟୋଗ ହୋଇଥାଏ.
x=\frac{-6±\sqrt{6^{2}-4\times 37}}{2}
ଏହି ସମୀକରଣ ମାନାଙ୍କ ଆକାରରେ ରହିଛି: ax^{2}+bx+c=0. \frac{-b±\sqrt{b^{2}-4ac}}{2a} କ୍ୱାଡ୍ରାଟିକ୍‌ ସୂତ୍ରରେ, a ପାଇଁ 1, b ପାଇଁ 6, ଏବଂ c ପାଇଁ 37 ପ୍ରତିବଦଳ କରନ୍ତୁ.
x=\frac{-6±\sqrt{36-4\times 37}}{2}
ବର୍ଗ 6.
x=\frac{-6±\sqrt{36-148}}{2}
-4 କୁ 37 ଥର ଗୁଣନ କରନ୍ତୁ.
x=\frac{-6±\sqrt{-112}}{2}
36 କୁ -148 ସହ ଯୋଡନ୍ତୁ.
x=\frac{-6±4\sqrt{7}i}{2}
-112 ର ବର୍ଗମୂଳ ବାହାର କରନ୍ତୁ.
x=\frac{-6+4\sqrt{7}i}{2}
ବର୍ତ୍ତମାନ ସମୀକରଣ x=\frac{-6±4\sqrt{7}i}{2} ସମାଧାନ କରନ୍ତୁ ଯେତେବେଳେ ± ଯୁକ୍ତ ଅଟେ. -6 କୁ 4i\sqrt{7} ସହ ଯୋଡନ୍ତୁ.
x=-3+2\sqrt{7}i
-6+4i\sqrt{7} କୁ 2 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x=\frac{-4\sqrt{7}i-6}{2}
ବର୍ତ୍ତମାନ ସମୀକରଣ x=\frac{-6±4\sqrt{7}i}{2} ସମାଧାନ କରନ୍ତୁ ଯେତେବେଳେ ± ବିଯୁକ୍ତ ଅଟେ. -6 ରୁ 4i\sqrt{7} ବିୟୋଗ କରନ୍ତୁ.
x=-2\sqrt{7}i-3
-6-4i\sqrt{7} କୁ 2 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x=-3+2\sqrt{7}i x=-2\sqrt{7}i-3
ବର୍ତ୍ତମାନ ସମୀକରଣ ସମାଧାନ ହୋଇଛି.
x^{2}+6x+37=0
କ୍ୱାଡ୍ରାଟିକ୍‌ ସମୀକରଣଗୁଡିକ ଯେପରିକି ଏହି ଗୋଟିଏ ବର୍ଗ ବାହାର କରିବା ସମ୍ପୂର୍ଣ୍ଣ କରିବା ଦ୍ୱାରା ସମାଧାନ କରାଯାଇପାରିବ. ବର୍ଗ ବାହାର କରିବା ସମ୍ପୂର୍ଣ୍ଣ କରିବା ପାଇଁ, ସମୀକରଣ ପ୍ରଥମେ x^{2}+bx=c ପ୍ରକାରେ ହେବା ଆବଶ୍ୟକ.
x^{2}+6x+37-37=-37
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱରୁ 37 ବିୟୋଗ କରନ୍ତୁ.
x^{2}+6x=-37
ସଂପୃକ୍ତ ସଂଖ୍ୟାରୁ ସେହି 37 ବିୟୋଗ କରିବାରେ 0 ମିଳିଥାଏ.
x^{2}+6x+3^{2}=-37+3^{2}
3 ପ୍ରାପ୍ତ କରିବା ପାଇଁ, x ଟର୍ମ୍‌‌ର ଗୁଣାଙ୍କ, 6 କୁ, 2 ଦ୍ୱାରା ବିଭକ୍ତ କରନ୍ତୁ. ତାପରେ ସମୀକରଣ ଉଭୟ ପାର୍ଶ୍ୱରେ 3 ର ବର୍ଗ ଯୋଡନ୍ତୁ. ଏହି ପଦକ୍ଷେପ ସମୀକରଣର ବାମ ହାତ ପାର୍ଶ୍ୱକୁ ଏକ ଯଥାର୍ଥ ବର୍ଗରେ ପରିଣତ କରିଥାଏ.
x^{2}+6x+9=-37+9
ବର୍ଗ 3.
x^{2}+6x+9=-28
-37 କୁ 9 ସହ ଯୋଡନ୍ତୁ.
\left(x+3\right)^{2}=-28
ଗୁଣନୀୟକ x^{2}+6x+9. ସାଧାରଣତଃ, ଯେତେବେଳେ x^{2}+bx+c ଏକ ପୂର୍ଣ୍ଣ ବର୍ଗ ଅଟେ, ଏହାକୁ ସର୍ବଦା \left(x+\frac{b}{2}\right)^{2} ଭାବେ ଗୁଣନୀୟକ କରାଯାଇପାରିବ.
\sqrt{\left(x+3\right)^{2}}=\sqrt{-28}
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱର ବର୍ଗମୂଳ ନିଅନ୍ତୁ.
x+3=2\sqrt{7}i x+3=-2\sqrt{7}i
ସରଳୀକୃତ କରିବା.
x=-3+2\sqrt{7}i x=-2\sqrt{7}i-3
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱରୁ 3 ବିୟୋଗ କରନ୍ତୁ.