ମୁଖ୍ୟ ବିଷୟବସ୍ତୁକୁ ଛାଡି ଦିଅନ୍ତୁ
x ପାଇଁ ସମାଧାନ କରନ୍ତୁ
Tick mark Image
ଗ୍ରାଫ୍

ୱେବ୍ ସନ୍ଧାନରୁ ସମାନ ପ୍ରକାରର ସମସ୍ୟା

ଅଂଶୀଦାର

x^{2}+25x+84=0
ଉଭୟ ପାର୍ଶ୍ଵକୁ 84 ଯୋଡନ୍ତୁ.
a+b=25 ab=84
ସମୀକରଣକୁ ସମାଧାନ କରିବାକୁ, ସୂତ୍ର x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right) ବ୍ୟବହାର କରି x^{2}+25x+84 ର ଫ୍ୟାକ୍ଟର୍‌ ବାହାର କରନ୍ତୁ. a ଏବଂ b ନିର୍ଣ୍ଣୟ କରିବାକୁ, ସମାଧାନ କରିବାକୁ ଏକ ସିଷ୍ଟମ୍‌ ସେଟ୍‌ ଅପ୍‌ କରନ୍ତୁ.
1,84 2,42 3,28 4,21 6,14 7,12
ଯେହେତୁ ab ଧନାତ୍ମକ ଅଟେ, a ଏବଂ b ର ସମାନ ଚିହ୍ନ ରହିଥାଏ. ଯେହେତୁa+b ଧନାତ୍ମକ ଅଟେ, ଉଭୟ a ଏବଂ b ଧନାତ୍ମକ ଅଟେ. ଏହିଭଳି ସମସ୍ତ ଇଣ୍ଟିଜର୍ ଯୋଡାର ତାଲିକା ପ୍ରସ୍ତୁତ କରନ୍ତୁ ଯାହା ଉତ୍ପାଦ 84 ପ୍ରଦାନ କରିଥାଏ.
1+84=85 2+42=44 3+28=31 4+21=25 6+14=20 7+12=19
ପ୍ରତି ଯୋଡା ପାଇଁ ସମଷ୍ଟି ହିସାବ କରନ୍ତୁ.
a=4 b=21
ସମାଧାନଟି ହେଉଛି ସେହି ଯୋଡା ଯାହା ସମଷ୍ଟି 25 ପ୍ରଦାନ କରିଥାଏ.
\left(x+4\right)\left(x+21\right)
ପ୍ରାପ୍ତ ମୂଲ୍ୟଗୁଡିକ ବ୍ୟବହାର କରି ଫ୍ୟାକ୍ଟରଯୁକ୍ତ ଅଭିବ୍ୟକ୍ତି \left(x+a\right)\left(x+b\right) ପୁନଃଲେଖନ୍ତୁ.
x=-4 x=-21
ସମୀକରଣ ସମାଧାନଗୁଡିକ ନିର୍ଣ୍ଣୟ କରିବାକୁ, x+4=0 ଏବଂ x+21=0 ସମାଧାନ କରନ୍ତୁ.
x^{2}+25x+84=0
ଉଭୟ ପାର୍ଶ୍ଵକୁ 84 ଯୋଡନ୍ତୁ.
a+b=25 ab=1\times 84=84
ସମୀକରଣ ସମାଧାନ କରିବାକୁ, ଗୋଷ୍ଠୀଭୁକ୍ତ କରଣ କରିବା ଦ୍ୱାରା ବାମ ହାତ ପାର୍ଶ୍ୱର ଫ୍ୟାକ୍ଟର୍‌ ବାହାର କରନ୍ତୁ. ପ୍ରଥମେ, ବାମ ହାତ ପାର୍ଶ୍ୱ x^{2}+ax+bx+84 ଭାବେ ପୁନଃ ଲେଖାଯିବା ଆବଶ୍ୟକ. a ଏବଂ b ନିର୍ଣ୍ଣୟ କରିବାକୁ, ସମାଧାନ କରିବାକୁ ଏକ ସିଷ୍ଟମ୍‌ ସେଟ୍‌ ଅପ୍‌ କରନ୍ତୁ.
1,84 2,42 3,28 4,21 6,14 7,12
ଯେହେତୁ ab ଧନାତ୍ମକ ଅଟେ, a ଏବଂ b ର ସମାନ ଚିହ୍ନ ରହିଥାଏ. ଯେହେତୁa+b ଧନାତ୍ମକ ଅଟେ, ଉଭୟ a ଏବଂ b ଧନାତ୍ମକ ଅଟେ. ଏହିଭଳି ସମସ୍ତ ଇଣ୍ଟିଜର୍ ଯୋଡାର ତାଲିକା ପ୍ରସ୍ତୁତ କରନ୍ତୁ ଯାହା ଉତ୍ପାଦ 84 ପ୍ରଦାନ କରିଥାଏ.
1+84=85 2+42=44 3+28=31 4+21=25 6+14=20 7+12=19
ପ୍ରତି ଯୋଡା ପାଇଁ ସମଷ୍ଟି ହିସାବ କରନ୍ତୁ.
a=4 b=21
ସମାଧାନଟି ହେଉଛି ସେହି ଯୋଡା ଯାହା ସମଷ୍ଟି 25 ପ୍ରଦାନ କରିଥାଏ.
\left(x^{2}+4x\right)+\left(21x+84\right)
\left(x^{2}+4x\right)+\left(21x+84\right) ଭାବରେ x^{2}+25x+84 ପୁନଃ ଲେଖନ୍ତୁ.
x\left(x+4\right)+21\left(x+4\right)
ପ୍ରଥମଟିରେ x ଏବଂ ଦ୍ୱିତୀୟ ଗୋଷ୍ଠୀରେ 21 ର ଗୁଣନିୟକ ବାହାର କରନ୍ତୁ.
\left(x+4\right)\left(x+21\right)
ଡିଷ୍ଟ୍ରିବ୍ୟୁଟିଭ୍ ପ୍ରପର୍ଟି (ବିତରଣ ବୈଶିଷ୍ଟ୍ୟ) ବ୍ୟବହାର କରି ସାଧାରଣ ପଦ x+4 ଗୁଣନିୟକ ବାହାର କରନ୍ତୁ.
x=-4 x=-21
ସମୀକରଣ ସମାଧାନଗୁଡିକ ନିର୍ଣ୍ଣୟ କରିବାକୁ, x+4=0 ଏବଂ x+21=0 ସମାଧାନ କରନ୍ତୁ.
x^{2}+25x=-84
ଏହି ପ୍ରଣାଳୀର ax^{2}+bx+c=0 ସମସ୍ତ ସମୀକରଣଗୁଡିକ କ୍ୱାଡ୍ରାଟିକ୍‌ ସୂତ୍ର: \frac{-b±\sqrt{b^{2}-4ac}}{2a} ବ୍ୟବହାର କରି ସମାଧାନ କରାଯାଇପାରିବ. କ୍ୱାଡ୍ରାଟିକ୍‌ ସୂତ୍ର ଦୁଇଟି ସମାଧାନ ପ୍ରଦାନ କରିଥାଏ, ଗୋଟିଏ ଯେତେବେଳେ ± ଯୋଗ ହୋଇଥାଏ ଏବଂ ଅନ୍ୟଟି ଯେତେବେଳେ ଏହା ବିୟୋଗ ହୋଇଥାଏ.
x^{2}+25x-\left(-84\right)=-84-\left(-84\right)
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱରେ 84 ଯୋଡନ୍ତୁ.
x^{2}+25x-\left(-84\right)=0
ସଂପୃକ୍ତ ସଂଖ୍ୟାରୁ ସେହି -84 ବିୟୋଗ କରିବାରେ 0 ମିଳିଥାଏ.
x^{2}+25x+84=0
0 ରୁ -84 ବିୟୋଗ କରନ୍ତୁ.
x=\frac{-25±\sqrt{25^{2}-4\times 84}}{2}
ଏହି ସମୀକରଣ ମାନାଙ୍କ ଆକାରରେ ରହିଛି: ax^{2}+bx+c=0. \frac{-b±\sqrt{b^{2}-4ac}}{2a} କ୍ୱାଡ୍ରାଟିକ୍‌ ସୂତ୍ରରେ, a ପାଇଁ 1, b ପାଇଁ 25, ଏବଂ c ପାଇଁ 84 ପ୍ରତିବଦଳ କରନ୍ତୁ.
x=\frac{-25±\sqrt{625-4\times 84}}{2}
ବର୍ଗ 25.
x=\frac{-25±\sqrt{625-336}}{2}
-4 କୁ 84 ଥର ଗୁଣନ କରନ୍ତୁ.
x=\frac{-25±\sqrt{289}}{2}
625 କୁ -336 ସହ ଯୋଡନ୍ତୁ.
x=\frac{-25±17}{2}
289 ର ବର୍ଗମୂଳ ବାହାର କରନ୍ତୁ.
x=-\frac{8}{2}
ବର୍ତ୍ତମାନ ସମୀକରଣ x=\frac{-25±17}{2} ସମାଧାନ କରନ୍ତୁ ଯେତେବେଳେ ± ଯୁକ୍ତ ଅଟେ. -25 କୁ 17 ସହ ଯୋଡନ୍ତୁ.
x=-4
-8 କୁ 2 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x=-\frac{42}{2}
ବର୍ତ୍ତମାନ ସମୀକରଣ x=\frac{-25±17}{2} ସମାଧାନ କରନ୍ତୁ ଯେତେବେଳେ ± ବିଯୁକ୍ତ ଅଟେ. -25 ରୁ 17 ବିୟୋଗ କରନ୍ତୁ.
x=-21
-42 କୁ 2 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x=-4 x=-21
ବର୍ତ୍ତମାନ ସମୀକରଣ ସମାଧାନ ହୋଇଛି.
x^{2}+25x=-84
କ୍ୱାଡ୍ରାଟିକ୍‌ ସମୀକରଣଗୁଡିକ ଯେପରିକି ଏହି ଗୋଟିଏ ବର୍ଗ ବାହାର କରିବା ସମ୍ପୂର୍ଣ୍ଣ କରିବା ଦ୍ୱାରା ସମାଧାନ କରାଯାଇପାରିବ. ବର୍ଗ ବାହାର କରିବା ସମ୍ପୂର୍ଣ୍ଣ କରିବା ପାଇଁ, ସମୀକରଣ ପ୍ରଥମେ x^{2}+bx=c ପ୍ରକାରେ ହେବା ଆବଶ୍ୟକ.
x^{2}+25x+\left(\frac{25}{2}\right)^{2}=-84+\left(\frac{25}{2}\right)^{2}
\frac{25}{2} ପ୍ରାପ୍ତ କରିବା ପାଇଁ, x ଟର୍ମ୍‌‌ର ଗୁଣାଙ୍କ, 25 କୁ, 2 ଦ୍ୱାରା ବିଭକ୍ତ କରନ୍ତୁ. ତାପରେ ସମୀକରଣ ଉଭୟ ପାର୍ଶ୍ୱରେ \frac{25}{2} ର ବର୍ଗ ଯୋଡନ୍ତୁ. ଏହି ପଦକ୍ଷେପ ସମୀକରଣର ବାମ ହାତ ପାର୍ଶ୍ୱକୁ ଏକ ଯଥାର୍ଥ ବର୍ଗରେ ପରିଣତ କରିଥାଏ.
x^{2}+25x+\frac{625}{4}=-84+\frac{625}{4}
ଭଗ୍ନାଂଶର ଉଭୟ ଲବ ଓ ହରର ବର୍ଗ ବାହାର କରିବା ଦ୍ୱାରା \frac{25}{2} ବର୍ଗ ବାହାର କରନ୍ତୁ.
x^{2}+25x+\frac{625}{4}=\frac{289}{4}
-84 କୁ \frac{625}{4} ସହ ଯୋଡନ୍ତୁ.
\left(x+\frac{25}{2}\right)^{2}=\frac{289}{4}
ଗୁଣନୀୟକ x^{2}+25x+\frac{625}{4}. ସାଧାରଣତଃ, ଯେତେବେଳେ x^{2}+bx+c ଏକ ପୂର୍ଣ୍ଣ ବର୍ଗ ଅଟେ, ଏହାକୁ ସର୍ବଦା \left(x+\frac{b}{2}\right)^{2} ଭାବେ ଗୁଣନୀୟକ କରାଯାଇପାରିବ.
\sqrt{\left(x+\frac{25}{2}\right)^{2}}=\sqrt{\frac{289}{4}}
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱର ବର୍ଗମୂଳ ନିଅନ୍ତୁ.
x+\frac{25}{2}=\frac{17}{2} x+\frac{25}{2}=-\frac{17}{2}
ସରଳୀକୃତ କରିବା.
x=-4 x=-21
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱରୁ \frac{25}{2} ବିୟୋଗ କରନ୍ତୁ.