ମୁଖ୍ୟ ବିଷୟବସ୍ତୁକୁ ଛାଡି ଦିଅନ୍ତୁ
x ପାଇଁ ସମାଧାନ କରନ୍ତୁ (ଜଟଳି ସମାଧାନ)
Tick mark Image
x ପାଇଁ ସମାଧାନ କରନ୍ତୁ
Tick mark Image
ଗ୍ରାଫ୍

ୱେବ୍ ସନ୍ଧାନରୁ ସମାନ ପ୍ରକାରର ସମସ୍ୟା

ଅଂଶୀଦାର

x^{2}+20x=45
ଏହି ପ୍ରଣାଳୀର ax^{2}+bx+c=0 ସମସ୍ତ ସମୀକରଣଗୁଡିକ କ୍ୱାଡ୍ରାଟିକ୍‌ ସୂତ୍ର: \frac{-b±\sqrt{b^{2}-4ac}}{2a} ବ୍ୟବହାର କରି ସମାଧାନ କରାଯାଇପାରିବ. କ୍ୱାଡ୍ରାଟିକ୍‌ ସୂତ୍ର ଦୁଇଟି ସମାଧାନ ପ୍ରଦାନ କରିଥାଏ, ଗୋଟିଏ ଯେତେବେଳେ ± ଯୋଗ ହୋଇଥାଏ ଏବଂ ଅନ୍ୟଟି ଯେତେବେଳେ ଏହା ବିୟୋଗ ହୋଇଥାଏ.
x^{2}+20x-45=45-45
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱରୁ 45 ବିୟୋଗ କରନ୍ତୁ.
x^{2}+20x-45=0
ସଂପୃକ୍ତ ସଂଖ୍ୟାରୁ ସେହି 45 ବିୟୋଗ କରିବାରେ 0 ମିଳିଥାଏ.
x=\frac{-20±\sqrt{20^{2}-4\left(-45\right)}}{2}
ଏହି ସମୀକରଣ ମାନାଙ୍କ ଆକାରରେ ରହିଛି: ax^{2}+bx+c=0. \frac{-b±\sqrt{b^{2}-4ac}}{2a} କ୍ୱାଡ୍ରାଟିକ୍‌ ସୂତ୍ରରେ, a ପାଇଁ 1, b ପାଇଁ 20, ଏବଂ c ପାଇଁ -45 ପ୍ରତିବଦଳ କରନ୍ତୁ.
x=\frac{-20±\sqrt{400-4\left(-45\right)}}{2}
ବର୍ଗ 20.
x=\frac{-20±\sqrt{400+180}}{2}
-4 କୁ -45 ଥର ଗୁଣନ କରନ୍ତୁ.
x=\frac{-20±\sqrt{580}}{2}
400 କୁ 180 ସହ ଯୋଡନ୍ତୁ.
x=\frac{-20±2\sqrt{145}}{2}
580 ର ବର୍ଗମୂଳ ବାହାର କରନ୍ତୁ.
x=\frac{2\sqrt{145}-20}{2}
ବର୍ତ୍ତମାନ ସମୀକରଣ x=\frac{-20±2\sqrt{145}}{2} ସମାଧାନ କରନ୍ତୁ ଯେତେବେଳେ ± ଯୁକ୍ତ ଅଟେ. -20 କୁ 2\sqrt{145} ସହ ଯୋଡନ୍ତୁ.
x=\sqrt{145}-10
-20+2\sqrt{145} କୁ 2 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x=\frac{-2\sqrt{145}-20}{2}
ବର୍ତ୍ତମାନ ସମୀକରଣ x=\frac{-20±2\sqrt{145}}{2} ସମାଧାନ କରନ୍ତୁ ଯେତେବେଳେ ± ବିଯୁକ୍ତ ଅଟେ. -20 ରୁ 2\sqrt{145} ବିୟୋଗ କରନ୍ତୁ.
x=-\sqrt{145}-10
-20-2\sqrt{145} କୁ 2 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x=\sqrt{145}-10 x=-\sqrt{145}-10
ବର୍ତ୍ତମାନ ସମୀକରଣ ସମାଧାନ ହୋଇଛି.
x^{2}+20x=45
କ୍ୱାଡ୍ରାଟିକ୍‌ ସମୀକରଣଗୁଡିକ ଯେପରିକି ଏହି ଗୋଟିଏ ବର୍ଗ ବାହାର କରିବା ସମ୍ପୂର୍ଣ୍ଣ କରିବା ଦ୍ୱାରା ସମାଧାନ କରାଯାଇପାରିବ. ବର୍ଗ ବାହାର କରିବା ସମ୍ପୂର୍ଣ୍ଣ କରିବା ପାଇଁ, ସମୀକରଣ ପ୍ରଥମେ x^{2}+bx=c ପ୍ରକାରେ ହେବା ଆବଶ୍ୟକ.
x^{2}+20x+10^{2}=45+10^{2}
10 ପ୍ରାପ୍ତ କରିବା ପାଇଁ, x ଟର୍ମ୍‌‌ର ଗୁଣାଙ୍କ, 20 କୁ, 2 ଦ୍ୱାରା ବିଭକ୍ତ କରନ୍ତୁ. ତାପରେ ସମୀକରଣ ଉଭୟ ପାର୍ଶ୍ୱରେ 10 ର ବର୍ଗ ଯୋଡନ୍ତୁ. ଏହି ପଦକ୍ଷେପ ସମୀକରଣର ବାମ ହାତ ପାର୍ଶ୍ୱକୁ ଏକ ଯଥାର୍ଥ ବର୍ଗରେ ପରିଣତ କରିଥାଏ.
x^{2}+20x+100=45+100
ବର୍ଗ 10.
x^{2}+20x+100=145
45 କୁ 100 ସହ ଯୋଡନ୍ତୁ.
\left(x+10\right)^{2}=145
ଗୁଣନୀୟକ x^{2}+20x+100. ସାଧାରଣତଃ, ଯେତେବେଳେ x^{2}+bx+c ଏକ ପୂର୍ଣ୍ଣ ବର୍ଗ ଅଟେ, ଏହାକୁ ସର୍ବଦା \left(x+\frac{b}{2}\right)^{2} ଭାବେ ଗୁଣନୀୟକ କରାଯାଇପାରିବ.
\sqrt{\left(x+10\right)^{2}}=\sqrt{145}
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱର ବର୍ଗମୂଳ ନିଅନ୍ତୁ.
x+10=\sqrt{145} x+10=-\sqrt{145}
ସରଳୀକୃତ କରିବା.
x=\sqrt{145}-10 x=-\sqrt{145}-10
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱରୁ 10 ବିୟୋଗ କରନ୍ତୁ.
x^{2}+20x=45
ଏହି ପ୍ରଣାଳୀର ax^{2}+bx+c=0 ସମସ୍ତ ସମୀକରଣଗୁଡିକ କ୍ୱାଡ୍ରାଟିକ୍‌ ସୂତ୍ର: \frac{-b±\sqrt{b^{2}-4ac}}{2a} ବ୍ୟବହାର କରି ସମାଧାନ କରାଯାଇପାରିବ. କ୍ୱାଡ୍ରାଟିକ୍‌ ସୂତ୍ର ଦୁଇଟି ସମାଧାନ ପ୍ରଦାନ କରିଥାଏ, ଗୋଟିଏ ଯେତେବେଳେ ± ଯୋଗ ହୋଇଥାଏ ଏବଂ ଅନ୍ୟଟି ଯେତେବେଳେ ଏହା ବିୟୋଗ ହୋଇଥାଏ.
x^{2}+20x-45=45-45
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱରୁ 45 ବିୟୋଗ କରନ୍ତୁ.
x^{2}+20x-45=0
ସଂପୃକ୍ତ ସଂଖ୍ୟାରୁ ସେହି 45 ବିୟୋଗ କରିବାରେ 0 ମିଳିଥାଏ.
x=\frac{-20±\sqrt{20^{2}-4\left(-45\right)}}{2}
ଏହି ସମୀକରଣ ମାନାଙ୍କ ଆକାରରେ ରହିଛି: ax^{2}+bx+c=0. \frac{-b±\sqrt{b^{2}-4ac}}{2a} କ୍ୱାଡ୍ରାଟିକ୍‌ ସୂତ୍ରରେ, a ପାଇଁ 1, b ପାଇଁ 20, ଏବଂ c ପାଇଁ -45 ପ୍ରତିବଦଳ କରନ୍ତୁ.
x=\frac{-20±\sqrt{400-4\left(-45\right)}}{2}
ବର୍ଗ 20.
x=\frac{-20±\sqrt{400+180}}{2}
-4 କୁ -45 ଥର ଗୁଣନ କରନ୍ତୁ.
x=\frac{-20±\sqrt{580}}{2}
400 କୁ 180 ସହ ଯୋଡନ୍ତୁ.
x=\frac{-20±2\sqrt{145}}{2}
580 ର ବର୍ଗମୂଳ ବାହାର କରନ୍ତୁ.
x=\frac{2\sqrt{145}-20}{2}
ବର୍ତ୍ତମାନ ସମୀକରଣ x=\frac{-20±2\sqrt{145}}{2} ସମାଧାନ କରନ୍ତୁ ଯେତେବେଳେ ± ଯୁକ୍ତ ଅଟେ. -20 କୁ 2\sqrt{145} ସହ ଯୋଡନ୍ତୁ.
x=\sqrt{145}-10
-20+2\sqrt{145} କୁ 2 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x=\frac{-2\sqrt{145}-20}{2}
ବର୍ତ୍ତମାନ ସମୀକରଣ x=\frac{-20±2\sqrt{145}}{2} ସମାଧାନ କରନ୍ତୁ ଯେତେବେଳେ ± ବିଯୁକ୍ତ ଅଟେ. -20 ରୁ 2\sqrt{145} ବିୟୋଗ କରନ୍ତୁ.
x=-\sqrt{145}-10
-20-2\sqrt{145} କୁ 2 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x=\sqrt{145}-10 x=-\sqrt{145}-10
ବର୍ତ୍ତମାନ ସମୀକରଣ ସମାଧାନ ହୋଇଛି.
x^{2}+20x=45
କ୍ୱାଡ୍ରାଟିକ୍‌ ସମୀକରଣଗୁଡିକ ଯେପରିକି ଏହି ଗୋଟିଏ ବର୍ଗ ବାହାର କରିବା ସମ୍ପୂର୍ଣ୍ଣ କରିବା ଦ୍ୱାରା ସମାଧାନ କରାଯାଇପାରିବ. ବର୍ଗ ବାହାର କରିବା ସମ୍ପୂର୍ଣ୍ଣ କରିବା ପାଇଁ, ସମୀକରଣ ପ୍ରଥମେ x^{2}+bx=c ପ୍ରକାରେ ହେବା ଆବଶ୍ୟକ.
x^{2}+20x+10^{2}=45+10^{2}
10 ପ୍ରାପ୍ତ କରିବା ପାଇଁ, x ଟର୍ମ୍‌‌ର ଗୁଣାଙ୍କ, 20 କୁ, 2 ଦ୍ୱାରା ବିଭକ୍ତ କରନ୍ତୁ. ତାପରେ ସମୀକରଣ ଉଭୟ ପାର୍ଶ୍ୱରେ 10 ର ବର୍ଗ ଯୋଡନ୍ତୁ. ଏହି ପଦକ୍ଷେପ ସମୀକରଣର ବାମ ହାତ ପାର୍ଶ୍ୱକୁ ଏକ ଯଥାର୍ଥ ବର୍ଗରେ ପରିଣତ କରିଥାଏ.
x^{2}+20x+100=45+100
ବର୍ଗ 10.
x^{2}+20x+100=145
45 କୁ 100 ସହ ଯୋଡନ୍ତୁ.
\left(x+10\right)^{2}=145
ଗୁଣନୀୟକ x^{2}+20x+100. ସାଧାରଣତଃ, ଯେତେବେଳେ x^{2}+bx+c ଏକ ପୂର୍ଣ୍ଣ ବର୍ଗ ଅଟେ, ଏହାକୁ ସର୍ବଦା \left(x+\frac{b}{2}\right)^{2} ଭାବେ ଗୁଣନୀୟକ କରାଯାଇପାରିବ.
\sqrt{\left(x+10\right)^{2}}=\sqrt{145}
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱର ବର୍ଗମୂଳ ନିଅନ୍ତୁ.
x+10=\sqrt{145} x+10=-\sqrt{145}
ସରଳୀକୃତ କରିବା.
x=\sqrt{145}-10 x=-\sqrt{145}-10
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱରୁ 10 ବିୟୋଗ କରନ୍ତୁ.