ମୁଖ୍ୟ ବିଷୟବସ୍ତୁକୁ ଛାଡି ଦିଅନ୍ତୁ
x ପାଇଁ ସମାଧାନ କରନ୍ତୁ
Tick mark Image
ଗ୍ରାଫ୍

ୱେବ୍ ସନ୍ଧାନରୁ ସମାନ ପ୍ରକାରର ସମସ୍ୟା

ଅଂଶୀଦାର

x^{2}+12x-32=0
ଏହି ପ୍ରଣାଳୀର ax^{2}+bx+c=0 ସମସ୍ତ ସମୀକରଣଗୁଡିକ କ୍ୱାଡ୍ରାଟିକ୍‌ ସୂତ୍ର: \frac{-b±\sqrt{b^{2}-4ac}}{2a} ବ୍ୟବହାର କରି ସମାଧାନ କରାଯାଇପାରିବ. କ୍ୱାଡ୍ରାଟିକ୍‌ ସୂତ୍ର ଦୁଇଟି ସମାଧାନ ପ୍ରଦାନ କରିଥାଏ, ଗୋଟିଏ ଯେତେବେଳେ ± ଯୋଗ ହୋଇଥାଏ ଏବଂ ଅନ୍ୟଟି ଯେତେବେଳେ ଏହା ବିୟୋଗ ହୋଇଥାଏ.
x=\frac{-12±\sqrt{12^{2}-4\left(-32\right)}}{2}
ଏହି ସମୀକରଣ ମାନାଙ୍କ ଆକାରରେ ରହିଛି: ax^{2}+bx+c=0. \frac{-b±\sqrt{b^{2}-4ac}}{2a} କ୍ୱାଡ୍ରାଟିକ୍‌ ସୂତ୍ରରେ, a ପାଇଁ 1, b ପାଇଁ 12, ଏବଂ c ପାଇଁ -32 ପ୍ରତିବଦଳ କରନ୍ତୁ.
x=\frac{-12±\sqrt{144-4\left(-32\right)}}{2}
ବର୍ଗ 12.
x=\frac{-12±\sqrt{144+128}}{2}
-4 କୁ -32 ଥର ଗୁଣନ କରନ୍ତୁ.
x=\frac{-12±\sqrt{272}}{2}
144 କୁ 128 ସହ ଯୋଡନ୍ତୁ.
x=\frac{-12±4\sqrt{17}}{2}
272 ର ବର୍ଗମୂଳ ବାହାର କରନ୍ତୁ.
x=\frac{4\sqrt{17}-12}{2}
ବର୍ତ୍ତମାନ ସମୀକରଣ x=\frac{-12±4\sqrt{17}}{2} ସମାଧାନ କରନ୍ତୁ ଯେତେବେଳେ ± ଯୁକ୍ତ ଅଟେ. -12 କୁ 4\sqrt{17} ସହ ଯୋଡନ୍ତୁ.
x=2\sqrt{17}-6
-12+4\sqrt{17} କୁ 2 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x=\frac{-4\sqrt{17}-12}{2}
ବର୍ତ୍ତମାନ ସମୀକରଣ x=\frac{-12±4\sqrt{17}}{2} ସମାଧାନ କରନ୍ତୁ ଯେତେବେଳେ ± ବିଯୁକ୍ତ ଅଟେ. -12 ରୁ 4\sqrt{17} ବିୟୋଗ କରନ୍ତୁ.
x=-2\sqrt{17}-6
-12-4\sqrt{17} କୁ 2 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x=2\sqrt{17}-6 x=-2\sqrt{17}-6
ବର୍ତ୍ତମାନ ସମୀକରଣ ସମାଧାନ ହୋଇଛି.
x^{2}+12x-32=0
କ୍ୱାଡ୍ରାଟିକ୍‌ ସମୀକରଣଗୁଡିକ ଯେପରିକି ଏହି ଗୋଟିଏ ବର୍ଗ ବାହାର କରିବା ସମ୍ପୂର୍ଣ୍ଣ କରିବା ଦ୍ୱାରା ସମାଧାନ କରାଯାଇପାରିବ. ବର୍ଗ ବାହାର କରିବା ସମ୍ପୂର୍ଣ୍ଣ କରିବା ପାଇଁ, ସମୀକରଣ ପ୍ରଥମେ x^{2}+bx=c ପ୍ରକାରେ ହେବା ଆବଶ୍ୟକ.
x^{2}+12x-32-\left(-32\right)=-\left(-32\right)
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱରେ 32 ଯୋଡନ୍ତୁ.
x^{2}+12x=-\left(-32\right)
ସଂପୃକ୍ତ ସଂଖ୍ୟାରୁ ସେହି -32 ବିୟୋଗ କରିବାରେ 0 ମିଳିଥାଏ.
x^{2}+12x=32
0 ରୁ -32 ବିୟୋଗ କରନ୍ତୁ.
x^{2}+12x+6^{2}=32+6^{2}
6 ପ୍ରାପ୍ତ କରିବା ପାଇଁ, x ଟର୍ମ୍‌‌ର ଗୁଣାଙ୍କ, 12 କୁ, 2 ଦ୍ୱାରା ବିଭକ୍ତ କରନ୍ତୁ. ତାପରେ ସମୀକରଣ ଉଭୟ ପାର୍ଶ୍ୱରେ 6 ର ବର୍ଗ ଯୋଡନ୍ତୁ. ଏହି ପଦକ୍ଷେପ ସମୀକରଣର ବାମ ହାତ ପାର୍ଶ୍ୱକୁ ଏକ ଯଥାର୍ଥ ବର୍ଗରେ ପରିଣତ କରିଥାଏ.
x^{2}+12x+36=32+36
ବର୍ଗ 6.
x^{2}+12x+36=68
32 କୁ 36 ସହ ଯୋଡନ୍ତୁ.
\left(x+6\right)^{2}=68
ଗୁଣନୀୟକ x^{2}+12x+36. ସାଧାରଣତଃ, ଯେତେବେଳେ x^{2}+bx+c ଏକ ପୂର୍ଣ୍ଣ ବର୍ଗ ଅଟେ, ଏହାକୁ ସର୍ବଦା \left(x+\frac{b}{2}\right)^{2} ଭାବେ ଗୁଣନୀୟକ କରାଯାଇପାରିବ.
\sqrt{\left(x+6\right)^{2}}=\sqrt{68}
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱର ବର୍ଗମୂଳ ନିଅନ୍ତୁ.
x+6=2\sqrt{17} x+6=-2\sqrt{17}
ସରଳୀକୃତ କରିବା.
x=2\sqrt{17}-6 x=-2\sqrt{17}-6
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱରୁ 6 ବିୟୋଗ କରନ୍ତୁ.